
Lecture 2-8

We begin by constructing the Dynkin diagrams of the root systems we have seen
(which it turns out is essentially all of them). In type An−1 we get a single chain of n− 1
vertices, each connected to its neighbors by a single edge. In type Bn we get a chain of n
dots, with the rightmost edge a double one and having an arrow pointing to the rightmost
vertex (and all other edges single). In type Cn we get the same diagram as in type Bn,
except that the arrow points the other way. In type Dn we get the same diagram as for
An−1 except that there is a new vertex joined to the next to rightmost one; all edges are
single. In type E8 we get a single chain of seven vertices with an extra vertex joined to the
third vertex in the chain; in types E7 (resp. E6) we get the same diagram with one vertex
(resp. two vertices) removed from the long end of the chain. In type F4 we get a chain
of four vertices with the middle edge a double one and having an arrow pointing to the
right. Finally, in type G2 we get a pair of vertices jointed by a triple edge with an arrow
pointing to the right. (In the non-crystallographic cases we get two vertices joined by an
edge labelled m for I2(m), the root system consisting of the vertices and edge midpoints
of a regular m-gon in the plane, together with their negatives. There are two remaining
root systems H3 and H4; here H3 consists of the edge midpoints of a regular icosahedron
while H4 consists of the centers of the faces of a 120-sided regular polytope in R4 called
the hecatonicosahedroid. The Coxeter graph of H3 is a chian of three vertices with the
leftmost edge labelled 5; for H4 it is a chain of four vetices with the leftmost edge labelled
5).

Now we are ready to classify all Dynkin diagrams of crystallographic root systems.
We begin with the simple observation that a graph is a Dynkin diagram if and only if
its connected components are Dynkin diagrams, for given any two roots systems Φ1,Φ2,
living in Rn,Rm, respectively, we can write Rn+m as the orthogonal direct sum of Rn and
Rm and accordingly realize the (disjoint orthogonal) union of the Φi as a new root system.

We have already seen the list of connected Dynkin diagrams, so it remain to see
that the list is complete. What we do is classify all Coxeter graphs arising from bases
of unit vectors in Rn such that the angle between any two of them is π − π/m for some
m ∈ {2, 3, 4, 6}; any simple subsystem of a root system give an example of such a basis,
obtained by dividing every simple root by its length. We begin by exhibiting certain graphs
that cannot occur. Given one of the root systems Φ described previously, one can observe
in each case that there is a unique lowest root γ, in the sense that δ − γ is a positive
combination of simple roots for every other root δ. We will work out what γ is in each case
below, noting in all cases that γ has a nonpositive dot product with every simple root α.
Now form the diagram attached to the old set of simple roots together with γ; this is called
the extended or affine Coxeter graph. The set of vectors is a dependent set; more precisely
there is a dependence relation among it in which all coefficients are positive integers. The
extended graph cannot correspond to any subdiagram of the Dynkin diagram of any root
system, for then the corresponding combination of simple roots would have square length
0. Moreover, any diagram obtained from an extended Coxeter graph by increasing the
label(s) of any edge(s) also cannot correspond to any subdiagram of a Dynkin diagram,
for the above combination of simple roots would still have nonpositive square length.

We now work out the root γ and construct the extended Coxeter graph for all crystal-



lographic root systems XN . In type An−1, we have γ = en−e1; in type Bn, γ = −e1−e2; in
type Cn, γ = −2e1; in type Dnγ = −e1−e2. In type E8γ = −e8−e7; in type E7γ = e7−e8;
in type E6γ = (1/2)(−1, . . . ,−1, 1, 1,−1). Finally, in type F4, γ = −e1 − e2 and in type
G2 it is (−2, 1, 1).

Constructing the extended Coxeter graphs, we get a closed cycle of n vertices in type
An−1; in type Bn, the diagram of type Bn with an extra vertex joined to the second leftmost
vertex; in type Cn, the extra vertex is joined by an arrow labelled 4 to the leftmost vertex;
in type Dn, the extra vertex is joined to the second leftmost vertex. In type E8, the extra
vertex is joined to the long end; in type E7, the extra vertex is joined to the short end; in
type E6, the extra vertex is joined to the topmost vertex (so overall we get three chains
of vertices of length three, all sharing a common vertex). In types F4 and G− 2 the extra
vertex is joined by an unlabelled edge to an end vertex.

Now it is not difficult to see that in fact any connected Dynkin diagram whose Coxeter
graph does not contain any subgraph of the kind described in the last paragraph must be
one of the diagrams in our list. (For the details see p. 37 of Humphreys’s book “Reflection
Groups and Coxeter Groups” cited previously). Hence this list is indeed complete.

The Coxeter and extended Coxeter graphs of type E are particularly interesting. All
consist of three chains, say of lengths p, q,, and r, sharing a vertex in common. Looking at
the triples (p, q, r) of positive integers that arise in this way, we get (2, 3, 3) for E6, (2, 3, 4)
for E7, and (2, 3, 5) for E8. It turns out that these are exactly the triples (p, q, r) of positive
integers such that 1/p + 1/q + 1/r > 1. Similarly, the triples ((3, 3, 3), (2, 4, 4), (2, 3, 6))
arising from the extended diagrams of type E are exactly those triples (p, q, r) such that
1/p + 1/q + 1/r = 1. This sum of three reciprocals pops up frequently in mathematics
and is intimately related to the behavior of triangles in Euclidean versus non-Euclidean
geometry.


