
Lecture 2-6

We now head toward the classification of root systems, following the treatment in
Humphreys’s 1990 book “Reflection Groups and Coxeter Groups” rather than the text,
and in particular considering non-crystallographic root systems as well. If Φ is a root
system (not necessarily crystallographic), then we begin by setting up a total order on the
ambient vector space Rn in which Φ lives, decreeing that a nonzero vector (a1, . . . , an) is
positive if and only if the first nonzero ai is positive, so that the sum ~v+ ~w of any positive
vectors ~v, ~w is positive, as is any positive multiple c~v of a positive vector v. We now have
a notion of positive and negative roots in Φ; given any root α, exactly one of α and −α is
positive, and if α, β are positive roots such that α+ β is a root, then it is a positive root.
Next, we consider all subsets S of the set Φ+ of positive roots such that every α ∈ Φ+ is
a combination of vectors in S with nonnegative coefficients (for example, Φ+ itself is one
such subset). Let ∆ be a minimal such subset, i.e. one not properly containing any other
such subset. I claim that (α, β) ≤ 0 for any α, β ∈ ∆. Indeed, otherwise sαβ = β + cαα is
a root, for some cα < 0. If this root is positive it must be a positive combination of roots∑
γ xγγ of roots in ∆. If the coefficient xβ is less than one, then by subtracting xββ from

both sides of sαβ =
∑
γ xγγ and dividing both sides by 1− xβ , we realize β as a positive

combination of other roots in ∆, whence β can be deleted from ∆, a contradiction. If
xβ ≥ 1 , then again subtracting xββ from both sides and dividing by 1 − xβ if xβ 6= 1,
we realize β as a negative combination of elements in ∆ and thus as a negative root (or
0 as a negative combination of roots in ∆), again a contradiction. Similarly, we get a
contradiction if instead sαβ is a negative root.

My next claim is that the roots in ∆ are linearly independent. Indeed, if we had a
dependence relation

∑
α cαα = 0 as α runs over ∆, then first of all not all the nonzero coef-

ficients cα can be of the same sign, lest the combination be a positive vector. Transferring
terms with negative coefficients over to the other side we get disjoint subsets ∆1,∆2 of ∆
and two nonzero equal combinations

∑
α∈∆1

cαα =
∑
β∈∆2

cββ for which the coefficients
cα, cβ are positive. But now the dot product of the right side

∑
cββ with some β must

be positive, while the dot product of α and β for every α appearing in the left side is
nonpositive, another contradiction.

Thus we have a set ∆ of linearly independent positive roots such that every positive
root is a positive combination of roots in ∆ and the angle between any two roots in
∆ is obtuse or right. In the crystallographic case, we can strengthen these properties.
First of all, given two nonproportional roots α, β with (α, β) > 0, the positive integers
2(α, beta)/(α, α), 2(αβ)/(β, β) have product at most 3 (by Cauchy-Schwarz), whence one
of these integers is 1. Then one of α− β and β − α, and thus both, are roots. Now, given
Φ+, let ∆ consist of the indecomposable roots in Φ+ (not expressible as a sum of two
other roots in Φ+). Then every root in Φ+ is a positive integral combination of roots in
∆ (so that every root in Φ is either a positive or a negative integral combination of roots
in ∆). We call the roots in ∆ simple and we call ∆ a simple subsystem. The subsystem
∆ is determined uniquely by the positive system Φ+, consisting as it does exactly of the
positive roots not expressible as positive combinations of two or more positive roots.

Now, given any two independent roots α, β ∈ Φ, the product sαsβ of the reflections
corresponding to α, β is a rotation in the plane spanned by α and β (through twice the



angle between them). As both sα, sβ lie in the finite Weyl group W , this rotation must
be by a rational multiple of 2π. If α, β ∈ ∆, then since no root can be a combination of
α and β with coefficients of different signs, we get the even stronger conclusion that the
angle between α and β must be π − π/m for some integer m ≥ 2. In the crystallographic
case we get the even stronger conclusion that the only possibilities for m are 2, 3, 4, and

6, since 4(α,β)2

(α,α)(β,β) must be a positive integer strictly less than 4. We can record all the

angles between simple roots very neatly in a diagram, as follows: take a set of n points,
one for every simple root α. If α and β are not orthogonal, join the corresponding vertices
by edges, using one edge if the angle between α and β is 2π/3, two edges if it is 3π/4,
and three edges if it is 5π/6. In the latter two cases, add an arrow pointing to the shorter
of α and β. Finally, if α, β are orthogonal, do not join the corresponding vertices by any
edges. We obtain the Dynkin diagram D of the crystallographic root system Φ. (If Φ is
not crystallographic, we replace D by the Coxeter graph, in which vertices α and β are
joined by a an edge labelled m, if the angle between them is π−π/m with m > 2; if m = 2,
the edge is omitted, while if m = 3, the edge is present but the label 3 is omitted, by a
standard convention).

Given any positive nonsimple root β, we know that β is a positive combination of
simple roots α, whence there must be a simple root α with (β, α) > 0. Reflecting β by α,
we get another root, necessarily positive since it is a combination of simple roots involving
at least one other than α with positive coefficient. Continuing in this way, we see that
given any positive root, some product of simple reflections (corresponding to simple roots)
takes it to a simple root. Since any conjugate gsαg

−1 of a reflection sα by an orthogonal
transformation g is the reflection sgα, we also see that all root reflections sβ lie in the
subgroup of W generated by the simple reflections, whence the Weyl group W is generated
by the simple reflections. Also, since every positive root is a product of simple reflections
applied to a simple root, and the effect of these simple reflections can be computed once
the angles between the simple roots are known, it follows that the root system Φ can be
recovered from its Dynkin diagram D. Moreover, given the set Φ+ of positive roots (with
respect to some choice of positive vectors in Rn) and α ∈ ∆, the corresponding simple
subsystem, we see that the reflection sα sends α to −α but any other positive root to
another positive root (involving a simple root with a positive coefficient). Now if we have
two distinct positive systems Φ+ and Φ+

1 , with simple subsystems ∆,∆1, then there must
be some α lying in ∆1 such that α /∈ Φ+. Applying sα to Φ+

1 , we get another positive
system whose intersection with Φ+ has one more element, namely −α, than it had before.
Continuing in this way, we see that any two positive systems, and thus any two simple
subsystems, are conjugate under the group W , whence in particular the Dynkin diagram
or Coxeter graph of a root system does not depend on the choice of simple roots.

In the classical cases, it is standard to decree that a nonzero (a1, . . . , an) ∈ Rn is
positive if and only if the first nonzero ai is positive. Then the simple roots in type An−1

are the vectors e1 − e2, . . . , en−2 − en; in type Bn we get the same simple roots plus the
root en; in type Cn we get the same simple roots plus the root 2en; finally in type Dn

we get the same simple roots plus the root en1
+ en. In type En it is standard to make

a different choice of positive vectors, decreeing that a nonzero (a1, . . . , an) is positive if
and only if the last nonzero ai is positive. Then the simple roots in type E8 turn out to



be 1/2(1,−1, . . . ,−1, 1), e2 − e1, e2 + e1, e3 − e2, . . . , e7 − e6. In type E7 we get the same
simple roots with the last one omitted; in type E6 we get the same simple roots with the
last two omitted. Finally, in types F4 and G2 we revert to our usual convention for positive
vectors. The simple roots in type F4 are e2 − e3, e3 − e4, e4, and 1/2(1,−1,−1,−1) and
those for G2 are (0, 1,−1), (1,−2, 1).


