Lecture 2-27

Last time we observed that irreducible left modules of a Lie algebra L are also irreducible left modules of its enveloping algebra U; as such they may be identified with quotients U / M of U by a maximal left ideal M. If U is semisimple and its basefield K is algebraically closed of characteristic 0 , let $L=H \oplus \oplus_{\alpha \in \Phi} L_{\alpha}$ be its root space decomposition (with H a Cartan subalgebra), so that Φ is a root system. Let Φ^{+}, Δ be a choice of positive subsystem and the corresponding choice of simple subsystem, respectively. If we let B be the sum of H and the positive root space L_{α} (for $\alpha \in \Phi^{+}$), then B is a solvable subalgebra of L. If now V is a finite-dimensional irreducible L-module, then Lie's Theorem guarantees that V has a one-dimensional submodule $K v$, so that any $h \in H$ sends v to $\lambda(h) v$ for some $\lambda \in H^{*}$, while $L \alpha v=0$ for $\alpha \in \Phi^{+}$. Now we can apply the PBW Theorem. Fix an ordered basis of L in which root vectors corresponding to negative roots come first, followed by a basis of H, followed by a basis of root vectors corresponding to positive roots. Realizing V as U / M as above, we see that M contains all basis vectors corresponding to positive roots, together with $h-\lambda(h)$ for all $h \in H$. Let I be the left ideal generated by just these elements. Then PBW says that U / I has as a basis all monomials in the negative root vectors, taking those vectors in fixed order (including the empty product, with the value 0); equivalently, V is spanned by all such monomials in the negative root basis vectors applied to v. But now since the toral subalgebra H acts diagonally on any such monomial with weight given by the corresponding sum of negative roots, it follows that V has a weight space decomposition $\sum_{\mu} V_{\mu}$, where $V_{\mu}=\{w \in V:[h w]=\mu(h) w\}$, where all weights μ are obtained from λ by a subtracting a suitable sum of negative roots. In particular, all weights μ lie below in λ in the partial order $<$ defined in the text (according to which $v<w$ for $v, w \in H^{*}$ if and only if $w-v$ is a sum of positive roots, or equivalently a sum of simple roots). We therefore call λ the highest weight of V in this situation.

Now as noted above V must take the form U / M where M is a maximal ideal containing the ideal I defined in the last paragraph. But any proper left ideal I^{\prime} containing I is spanned by common eigenvectors for ad H, having weight equal to a sum of negatives of simple roots. Hence the weight 0 cannot occur in I^{\prime}, corresponding uniquely as it does to the monomial 1 , which generates all of U, so the sum M of all proper left ideals I^{\prime} containing I is again proper, being a sum of weight spaces corresponding to nonzero weights. This says that M is the unique maximal left ideal containing I. Hence any two irreducible left L-modules V, W with the same highest weight λ are isomorphic (even if they are infinite-dimensional).

Moreover, there is a simple necessary condition on the highest weight λ for the irreducible module V_{λ} to be finite-dimensional, which turns out to be sufficient. Indeed, for each simple root $\alpha \in \Delta$, let S_{α} be the simple subalgebra of L isomorphic to $\mathfrak{s l}(2)$ defined earlier; it is spanned by the one-dimensional root spaces $L_{\alpha}, L_{-\alpha}$ and their bracket [$L_{\alpha} L_{-\alpha}$], a one-dimensional subalgebra of H. If $V-\lambda$ is finite-dimensional, it must be a sum of irreducible finite-dimensional S_{α}-modules; in any such module we know that any weight vector sent to 0 by $x_{\alpha} \in L_{\alpha}$ necessarily has h_{α} weight equal to a nonnegative integer. Hence $\lambda\left(h_{\alpha}\right)=2(\lambda \cdot \alpha) /(\alpha \cdot \alpha) \in \mathbb{N}$, the nonnegative integers.

Now the converse holds as well: if λ satisfies this condition and if we have $n_{i}=$ $2\left(\lambda \cdot \alpha_{i}\right) /\left(\alpha_{i} \cdot \alpha_{i}\right) \in \mathbb{N}$, where $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, then let N^{-}be the subalgebra of L
spanned by the negative root vectors and let J be the ideal of $U\left(N^{-}\right)$generated by $y_{i}^{n_{i}+1}$, where y_{i} is a nonzero root vector in $L_{-\alpha_{i}}$, then one checks that $I+J$ is a left ideal of U (since $x_{j} \in L_{\alpha_{j}}$ commutes with any power of y_{i} if $j \neq i$, while the commutator $\left[x_{i} y_{i}^{n_{i}+1}\right] \in I$ by a direct calculation following from the representation theory of $\mathfrak{s l}(2)$. Hence if $M=I+J$, then the quotient $V=U / M$ is spanned by weight vectors, exactly one of them having weight λ and the others having weight strictly below λ in the partial order $<$. All weight spaces V_{μ} with $\mu<\lambda$ have finite dimension, since there are only finitely many ways to write the difference $\mu-\lambda$ as a sum of negative roots. Then V is a sum of finite-dimensional S_{i} modules for each i, since the S_{i}-submodule of it generated by 1 is finite-dimensional by construction, and the sum of the finite-dimensional S_{i}-submodules of V is stable under left multiplication by L, so is all of V. Now we can imitate the argument in our earlier construction of a Lie algebra with root system Φ. Multiplication by $x_{i} \in L_{\alpha_{i}}$ acts locally nilpotently on V, as does multiplication by $y_{i} \in L_{-\alpha_{i}}$, so the product $\left(\exp x_{i}\right)\left(\exp -y_{i}\right)\left(\exp x_{i}\right)$ acts by a well-defined automorphism of V, acting on its weight spaces by the simple reflection s_{i} in the Weyl group W. Hence weights μ, μ^{\prime} conjugate under the Weyl group W of L are such that their weight spaces $V_{\mu}, V_{\mu^{\prime}}$ have the same dimension.

But now any dominant weight μ (having nonnegative dot product with all α_{i}) lying strictly below λ in the partial order must have smaller square length than λ, since if ν is a sum of simple roots than $\mu \cdot \nu$ and $\nu \cdot \nu$ are both nonnegative, so $(\mu+\nu) \cdot(\mu+\nu)$ is strictly larger than $\mu \cdot \mu$. We already know that any element of the weight lattice is W-conjugate to a dominant weight (keep conjugating by a simple reflection until the dot product with all simple roots is nonnegative), so only finitely many dominant weights μ can occur as weights of V (there are only finitely many vectors with square length bounded by a fixed constant in any lattice), and so only finitely many weights altogether occur in V, each with a finite-dimensional weight space. Hence V is finite-dimensional, as desired; we also see that any two W-conjugate weights μ, μ^{\prime} in V have the same multiplicity (that is, weight spaces of the same dimension).

