
Lecture 2-27

Last time we observed that irreducible left modules of a Lie algebra L are also ir-
reducible left modules of its enveloping algebra U ; as such they may be identified with
quotients U/M of U by a maximal left ideal M . If U is semisimple and its basefield K is
algebraically closed of characteristic 0, let L = H ⊕⊕α∈ΦLα be its root space decomposi-
tion (with H a Cartan subalgebra), so that Φ is a root system. Let Φ+,∆ be a choice of
positive subsystem and the corresponding choice of simple subsystem, respectively. If we
let B be the sum of H and the positive root space Lα (for α ∈ Φ+), then B is a solvable
subalgebra of L. If now V is a finite-dimensional irreducible L-module, then Lie’s Theorem
guarantees that V has a one-dimensional submodule Kv, so that any h ∈ H sends v to
λ(h)v for some λ ∈ H∗, while Lαv = 0 for α ∈ Φ+. Now we can apply the PBW Theorem.
Fix an ordered basis of L in which root vectors corresponding to negative roots come first,
followed by a basis of H, followed by a basis of root vectors corresponding to positive roots.
Realizing V as U/M as above, we see that M contains all basis vectors corresponding to
positive roots, together with h − λ(h) for all h ∈ H. Let I be the left ideal generated by
just these elements. Then PBW says that U/I has as a basis all monomials in the nega-
tive root vectors, taking those vectors in fixed order (including the empty product, with
the value 0); equivalently, V is spanned by all such monomials in the negative root basis
vectors applied to v. But now since the toral subalgebra H acts diagonally on any such
monomial with weight given by the corresponding sum of negative roots, it follows that
V has a weight space decomposition

∑
µ Vµ, where Vµ = {w ∈ V : [hw] = µ(h)w}, where

all weights µ are obtained from λ by a subtracting a suitable sum of negative roots. In
particular, all weights µ lie below in λ in the partial order < defined in the text (according
to which v < w for v, w ∈ H∗ if and only if w−v is a sum of positive roots, or equivalently
a sum of simple roots). We therefore call λ the highest weight of V in this situation.

Now as noted above V must take the form U/M where M is a maximal ideal containing
the ideal I defined in the last paragraph. But any proper left ideal I ′ containing I is
spanned by common eigenvectors for ad H, having weight equal to a sum of negatives
of simple roots. Hence the weight 0 cannot occur in I ′, corresponding uniquely as it
does to the monomial 1, which generates all of U , so the sum M of all proper left ideals
I ′ containing I is again proper, being a sum of weight spaces corresponding to nonzero
weights. This says that M is the unique maximal left ideal containing I. Hence any two
irreducible left L-modules V,W with the same highest weight λ are isomorphic (even if
they are infinite-dimensional).

Moreover, there is a simple necessary condition on the highest weight λ for the ir-
reducible module Vλ to be finite-dimensional, which turns out to be sufficient. Indeed,
for each simple root α ∈ ∆, let Sα be the simple subalgebra of L isomorphic to sl(2)
defined earlier; it is spanned by the one-dimensional root spaces Lα, L−α and their bracket
[LαL−α], a one-dimensional subalgebra of H. If V − λ is finite-dimensional, it must be a
sum of irreducible finite-dimensional Sα-modules; in any such module we know that any
weight vector sent to 0 by xα ∈ Lα necessarily has hα weight equal to a nonnegative
integer. Hence λ(hα) = 2(λ · α)/(α · α) ∈ N, the nonnegative integers.

Now the converse holds as well: if λ satisfies this condition and if we have ni =
2(λ · αi)/(αi · αi) ∈ N, where ∆ = {α1, . . . , αr}, then let N− be the subalgebra of L



spanned by the negative root vectors and let J be the ideal of U(N−) generated by yni+1
i ,

where yi is a nonzero root vector in L−αi
, then one checks that I + J is a left ideal

of U (since xj ∈ Lαj
commutes with any power of yi if j 6= i, while the commutator

[xiy
ni+1
i ] ∈ I by a direct calculation following from the representation theory of sl(2).

Hence if M = I+J , then the quotient V = U/M is spanned by weight vectors, exactly one
of them having weight λ and the others having weight strictly below λ in the partial order
<. All weight spaces Vµ with µ < λ have finite dimension, since there are only finitely
many ways to write the difference µ − λ as a sum of negative roots. Then V is a sum of
finite-dimensional Si modules for each i, since the Si-submodule of it generated by 1 is
finite-dimensional by construction, and the sum of the finite-dimensional Si-submodules
of V is stable under left multiplication by L, so is all of V . Now we can imitate the
argument in our earlier construction of a Lie algebra with root system Φ. Multiplication
by xi ∈ Lαi

acts locally nilpotently on V , as does multiplication by yi ∈ L−αi
, so the

product (exp xi)(exp −yi)(exp xi) acts by a well-defined automorphism of V , acting on
its weight spaces by the simple reflection si in the Weyl group W . Hence weights µ, µ′

conjugate under the Weyl group W of L are such that their weight spaces Vµ, Vµ′ have the
same dimension.

But now any dominant weight µ (having nonnegative dot product with all αi) lying
strictly below λ in the partial order must have smaller square length than λ, since if ν is a
sum of simple roots than µ · ν and ν · ν are both nonnegative, so (µ+ ν) · (µ+ ν) is strictly
larger than µ · µ. We already know that any element of the weight lattice is W -conjugate
to a dominant weight (keep conjugating by a simple reflection until the dot product with
all simple roots is nonnegative), so only finitely many dominant weights µ can occur as
weights of V (there are only finitely many vectors with square length bounded by a fixed
constant in any lattice), and so only finitely many weights altogether occur in V , each with
a finite-dimensional weight space. Hence V is finite-dimensional, as desired; we also see
that any two W -conjugate weights µ, µ′ in V have the same multiplicity (that is, weight
spaces of the same dimension).


