
Lecture 2-25

Now that we have constructed the semisimple Lie algebra L over any algebraically
closed field of characteristic 0 (and analogues of them over any field, or even any commu-
tative ring, of characteristic 0), our remaining task this quarter is understand the finite-
dimensional L-modules; by Weyl’s Theorem this reduces to understanding their finite-
dimensional irreducible modules. For this we need another general construction along the
lines of the one we used to prove that for any root system Φ there is a Lie algebra having Φ
as its root system. Let K be a field (arbitrary for now). Last time we defined the free Lie
K-algebra on a set x1, . . . , xn of generators, as a Lie subalgebra of the tensor algebra T
generated by the xi (a free noncommutative algebra). Given a quotient F/I of F by a Lie
ideal I, it is natural to hope that it embeds in the quotient T/J , where J is the two-sided
ordinary ideal of T generated by I; then T/J would be an associative algebra containing
the Lie algebra F/I in such way that the bracket operation in F/I is given by commutation
in the associative algebra. Less abstractly, we might start with a finite-dimensional Lie
algebra L over K and ask whether there is a larger associative algebra containing L such
that commutation in it of elements of L matches the bracket operation in L. Of course, if
L is semisimple and π is a faithful representation of L, regarded as in injective homomor-
phism from L to gl(n,K) for some n, then gl(n,K) is an example of such an algebra; but
we want a single algebra large enough to capture all representations of L simultaneously.

A natural way to construct such an algebra U is start with the tensor algebra T on
the underlying vector space of L and then mod out by the relations xy − yx = [x, y] for
x, y ∈ L; note that here we are starting with an associative algebra and moding out by a
two-sided ideal, whereas last time we started with a free Lie algebra and moded out by a Lie
algebra ideal. We call U = U(L) the universal enveloping algebra, or just the enveloping
algebra, of L. For example, if L is abelian, say with basis x1, . . . , xn, then clearly U is
just the polynomial ring over K (or free commutative K-algebra) in the xi, regarded as
independent variables. A famous theorem called the Poincaré-Birkhoff-Witt (or PBW)
Theorem asserts that the basic features of U in this example are found in general. More
precisely, given L and U defined as above, it asserts that if x1, . . . , xn is an ordered basis
of L, then the monomials xm1

1 . . . xmn
n ,mi ≥ 0, form a basis of U . It is fairly easy to see by

induction on the length of a monomial that monomials of the above form span U ; the basic
idea of the proof is simply to note that if xi, xj are basis vectors of L and if j > i, then
the product xjxi of these basis elements in the “wrong” order is just xixj + [xjxi], while
in turn [xjxi] is a linear combination of the xk. Iterating this calculation, we see that any
m-fold product of xi can be rewritten as a combination of monomials in the above form,
each of total degree at most m. The hard part is to see that monomials in the above form
are linearly independent in U . This is done by constructing a suitable representation of
U on S, the polynomial ring over K on the basis x1, . . . , xn of L. The details are on pp.
93-4 of the text.

There is a more sophisticated way to look at the construction of U from L. Let
Um = Um(L) be the K-subspace of U spanned by products of at most m elements of L
(or equivalently at most m generators xi). Then Um−1 is clearly a subspace of Um. Make
the direct sum G of all the quotients Gm = Um/Um−1 for m ≥ 0 (taking U−1 = 0 into a
rings by decreeing that if u, v are cosets of Un−1 and Un and Um−1 in Um, respectively,



and if um, vn represent u, v, respectively, then uv is the coset of umvn in Um+n/Um+n−1.
It is easy to check that the definition of uv does not depend on the choice of um, vn. Then
the images x̄i in G of the generators xi of U commute in G, so we get a map from the
polynomial ring S to G. Then the PBW Theorem implies (and in fact is equivalent to)
the assertion that this map is an isomorphism.

(As an interesting consequence we see that the noncommutative algebra U has no
zero divisors; indeed, given nonzero u, v ∈ U , there are m,n such that the images of u, v
in Gn, Gm, respectively, are nonzero; but then the image of uv in Gn+m is not zero, since
polynomial rings over fields have no zero divisors, whence we cannot have uv = 0.)

By the construction of U = U(L) we see that (left) L-modules M may be naturally
identified with left U -modules, so that we can apply the methods of associative (but not
commutative) rings to study L-modules. This will be our basic approach, but we start with
the Lie-theoretic observation that if M is a finite-dimensional module over a semisimple
Lie algebra L with Cartan subalgebra H, root system Φ, and Borel subalgebra B equal
to the sum of H and all positive roots spaces Lα, then by the preservation of the Jordan
form and Lie’s Theorem M has a nonzero weight vector v which is sent to 0 by the derived
subalgebra of B, so that there is λ ∈ H∗ with hv = λ(h)v for all h ∈ H but Lαv = 0 for
any positive root α ∈ Φ. If M is irreducible, then the weight λ turns out to be uniquely
determined by M and is called its highest weight. We will parametrize finite-dimensional
irreducible L-modules by their highest weights and determine which weights can occur as
highest weights.


