Lecture 2-25

Now that we have constructed the semisimple Lie algebra L over any algebraically
closed field of characteristic 0 (and analogues of them over any field, or even any commu-
tative ring, of characteristic 0), our remaining task this quarter is understand the finite-
dimensional L-modules; by Weyl’s Theorem this reduces to understanding their finite-
dimensional irreducible modules. For this we need another general construction along the
lines of the one we used to prove that for any root system @ there is a Lie algebra having ®
as its root system. Let K be a field (arbitrary for now). Last time we defined the free Lie
K-algebra on a set x1,...,x, of generators, as a Lie subalgebra of the tensor algebra T
generated by the z; (a free noncommutative algebra). Given a quotient F'/I of F by a Lie
ideal I, it is natural to hope that it embeds in the quotient 7'/J, where J is the two-sided
ordinary ideal of T' generated by I; then T'/J would be an associative algebra containing
the Lie algebra F'/I in such way that the bracket operation in F'/I is given by commutation
in the associative algebra. Less abstractly, we might start with a finite-dimensional Lie
algebra L over K and ask whether there is a larger associative algebra containing L such
that commutation in it of elements of L matches the bracket operation in L. Of course, if
L is semisimple and 7 is a faithful representation of L, regarded as in injective homomor-
phism from L to gl(n, K) for some n, then gl(n, K) is an example of such an algebra; but
we want a single algebra large enough to capture all representations of L simultaneously.

A natural way to construct such an algebra U is start with the tensor algebra T on
the underlying vector space of L and then mod out by the relations zy — yz = [z,y] for
x,y € L; note that here we are starting with an associative algebra and moding out by a
two-sided ideal, whereas last time we started with a free Lie algebra and moded out by a Lie
algebra ideal. We call U = U(L) the universal enveloping algebra, or just the enveloping
algebra, of L. For example, if L is abelian, say with basis z1,... ,x,, then clearly U is
just the polynomial ring over K (or free commutative K-algebra) in the z;, regarded as
independent variables. A famous theorem called the Poincaré-Birkhoff-Witt (or PBW)
Theorem asserts that the basic features of U in this example are found in general. More
precisely, given L and U defined as above, it asserts that if x1,... ,x, is an ordered basis
of L, then the monomials x{"* ...x" m; > 0, form a basis of U. It is fairly easy to see by
induction on the length of a monomial that monomials of the above form span U; the basic
idea of the proof is simply to note that if z;,z; are basis vectors of L and if j > 4, then
the product z;z; of these basis elements in the “wrong” order is just z;z; + [z;z;], while
in turn [z;x;] is a linear combination of the xj. Iterating this calculation, we see that any
m-fold product of x; can be rewritten as a combination of monomials in the above form,
each of total degree at most m. The hard part is to see that monomials in the above form
are linearly independent in U. This is done by constructing a suitable representation of
U on S, the polynomial ring over K on the basis xz1,...,x, of L. The details are on pp.
93-4 of the text.

There is a more sophisticated way to look at the construction of U from L. Let
Uy = Uy (L) be the K-subspace of U spanned by products of at most m elements of L
(or equivalently at most m generators x;). Then U,,_; is clearly a subspace of U,,. Make
the direct sum G of all the quotients G,, = U,,/U,,—1 for m > 0 (taking U_; = 0 into a
rings by decreeing that if u,v are cosets of U,,_1 and U,, and U,,_; in U,,, respectively,



and if u,,, v, represent u, v, respectively, then uv is the coset of upv, in Upyn/Uman—1-
It is easy to check that the definition of uv does not depend on the choice of u,,,v,. Then
the images z; in G of the generators x; of U commute in GG, so we get a map from the
polynomial ring S to G. Then the PBW Theorem implies (and in fact is equivalent to)
the assertion that this map is an isomorphism.

(As an interesting consequence we see that the noncommutative algebra U has no
zero divisors; indeed, given nonzero u,v € U, there are m,n such that the images of u, v
in G,,, G, respectively, are nonzero; but then the image of uv in G, is not zero, since
polynomial rings over fields have no zero divisors, whence we cannot have uv = 0.)

By the construction of U = U(L) we see that (left) L-modules M may be naturally
identified with left U-modules, so that we can apply the methods of associative (but not
commutative) rings to study L-modules. This will be our basic approach, but we start with
the Lie-theoretic observation that if M is a finite-dimensional module over a semisimple
Lie algebra L with Cartan subalgebra H, root system ®, and Borel subalgebra B equal
to the sum of H and all positive roots spaces L, then by the preservation of the Jordan
form and Lie’s Theorem M has a nonzero weight vector v which is sent to 0 by the derived
subalgebra of B, so that there is A\ € H* with hv = A(h)v for all h € H but L,v = 0 for
any positive root a € ®. If M is irreducible, then the weight A turns out to be uniquely
determined by M and is called its highest weight. We will parametrize finite-dimensional
irreducible L-modules by their highest weights and determine which weights can occur as
highest weights.



