Lecture 2-22

One further conjugacy result, which I will not take the time to prove. Given a semisimple Lie algebra L over an algebraically closed field K of characteristic 0 , let H be a maximal toral subalgebra and Φ the corresponding root system. Let Φ^{+}be a positive subsystem of Φ. Then $B=H \oplus \oplus_{\alpha \in \Phi^{+}} L_{\alpha}$ is a subalgebra of L, whose derived subalgebra $\oplus_{\alpha \in \Phi^{+}} L_{\alpha}$ is easily seen to be nilpotent, so B is solvable; in an upcoming homework problem you will show that B is not properly contained in any other solvable subalgebra of L. We call B a Borel subalgebra of L; more precisely, any subalgebra B constructed as above is a called a standard Borel subalgebra of L (relative to H, Φ, and Φ^{+}). Then it turns out that any two Borel (that is, maximal solvable) subalgebras of L are conjugate under Int L. We will not need this result, but it plays a crucial role in the geometry of L, the quotient of Int L by the stabilizer of B being called the flag variety of Int L.

We now address the question of how one constructs a semisimple Lie algebra over a field K of characteristic 0 with a specified root system Φ of rank n (lying in a Euclidean space \mathbb{R}^{n} equipped with the usual dot product; we assume that the dot product takes rational values on $\Phi \times \Phi)$. Fix a simple subsystem $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of Φ. We begin by recalling the free noncommutative algebra T on a set x_{1}, \ldots, x_{n} of generators x_{i}; this is by definition spanned over K by all formal products of not necessarily distinct x_{i}, regarding all such products as linearly independent. The free Lie algebra F generated by the x_{i} is the Lie subalgebra of T generated by the x_{i}; it is spanned over K by all m-fold brackets of generators x_{i} (for all m), with the only dependence relations among these brackets being the ones arising from anticommuativity of the bracket operation and the Jacobi identity. If I is the ideal of F generated by r_{1}, \ldots, r_{m}, then the quotient F / I is said to be generated by the x_{i} with relations the r_{i}.

Applying this construction to our situation, we choose $3 n$ generators, labelled h_{i}, x_{i}, and y_{i} for $1 \leq i \leq n$. The x_{i} and y_{i} correspond to the roots $\alpha_{i},-\alpha_{i}$. As relations we start with $\left[h_{i} h_{j}\right]=0$ for any i, j, while $\left[h_{i} x_{j}\right]=\frac{2 \alpha_{i} \cdot \alpha_{j}}{\alpha_{i} \cdot \alpha_{i}} x_{j},\left[h_{i} y_{j}\right]=\frac{-2 \alpha_{i} \cdot \alpha_{j}}{\alpha_{i} \cdot \alpha_{i}} y_{j}$; we further have $\left[x_{i} y_{i}\right]=h_{i}$ for all i, while $\left[x_{i} y_{j}\right]=0$ for $i \neq j$. We first examine the Lie algebra L_{0} defined by these relations alone. This algebra is infinite-dimensional, but it has some useful structure. By constructing a suitable representation of it (see p. 97 of the text) one shows that L_{0} is the vector space direct sum of the subalgebra Y of it generated by the y_{i}, the subalgebra X generated by the x_{i}, and the subalgebra H generated by the h_{i}; moreover, the x_{i}, y_{i}, and H_{i} are linearly independent in L_{0}. The subalgebra H is easy to understand, being just the span of the h_{i} (an abelian Lie algebra). The subalgebras Y and X are more complicated, but they have a graded structure: if the m-fold bracket of any set of x_{i} is given a grade equal to the corresponding sum of the α_{i}, then X is the vector space direct sum of the X_{λ}, as λ runs through the nonnegative integral combinations of the α_{i}, and $\left[X_{\lambda} X_{\mu}\right] \subset X_{\lambda+\mu}$; also L_{λ} consists exactly of the elements $x \in L_{0}$ such that $[h x]=\lambda(h) x$ for h in the span H of the h_{i}. A similar result holds for Y, where this algebra is graded by the nonpositive integral combinations of the α_{i}. In particular, the α_{i} weight space of L_{0} is one-dimensional, being spanned by x_{i}, while the $-\alpha_{i}$ weight space is likewise one-dimensional, being spanned by y_{i}. The $k \alpha_{i}$ weight space of L_{0} is 0 for $k \neq 0,1,-1$, since no bracket of x 's or y 's can have that weight.

Now we impose finiteness conditions which have the effect of cutting L_{0} down to
exactly the size it must have to be a finite-dimensional semisimple algebra with root system Φ. We know that $\alpha_{i}-\alpha_{j}$ is not a root for $i \neq j$; reflecting by $s_{\alpha_{j}}$, we see that $s_{\alpha_{j}}\left(\alpha_{i}\right)+\alpha_{j}=\alpha_{i}+k_{i j} \alpha_{j}$ is not a root, where $k=k_{i j}=\frac{-2 \alpha_{i} \cdot \alpha_{j}}{\left(\alpha_{j} \cdot \alpha_{j}\right)}+1$. We therefore impose the relation that $\left(\operatorname{ad} x_{i}\right)^{k} x_{j}=0$, and similarly for y_{i}, y_{j}. Initially we let I, J be the ideals of X, Y respectively, generated by these brackets; but then a calculation on p. 99 of the text shows that I, J are in fact both ideals of L_{0}. These ideals are graded elements, so the quotient of L_{0} by the sum $I+J$ retains a graded structure. Then one checks that ad x_{i}, ad y_{i} are locally nilpotent in the quotient $L=L_{0} /(I+J)$ (given any element z of this quotient, some power of ad x_{i} and some power of ad y_{i} both send z to 0), so that $\left(\exp \operatorname{ad} x_{i}\right)\left(\exp\right.$ ad $\left.-y_{i}\right)\left(\exp\right.$ ad $\left.x_{i}\right)$ is well-defined automorphism of L, acting on its H-root spaces by the reflection $s_{\alpha_{i}}$. It follows that the Weyl group W corresponding to Φ acts on the root spaces of L sending each root space to another one of the same dimension. In particular, for any root λ that is W-conjugate to a simple root α_{i}, the dimension of the λ-root space of H in L is 1 , while for any multiple $k \lambda$ of a root λ with $k \neq 0,1,-1$ the dimension of the $k \lambda$-root space is 0 . But now an exercise in the last HW set says that any $\lambda \in H^{*}$ is either a multiple of a root, or else some W-conjugate is a combination of simple roots in which some coefficients are positive and others negative. The λ-root space in the latter case has dimension 0 , as no such weight can occur in L_{0}. The upshot is that the H-roots of L are exactly those in Φ and each root space is one-dimensional. But then L is indeed finite-dimensional and semisimple with root system Φ, as desired.

