
Lecture 2-20

Last time we saw that, given a semisimple Lie algebra L and an automorphism π of
its root system Φ, and given a simple subsystem ∆ of Φ, we can choose nonzero vectors
xα in all simple root spaces Lα, together with nonzero vectors xπα in all root spaces Lπα,
and then there will be a unique automorphism gπ of L agreeing with π on the maximal
toral subalgebra H and sending xα to xπα for all α ∈ ∆. Now in general, one difficulty
in applying this result is that gπ will not send simple root spaces to simple root spaces,
so it is hard to understand the product gπgπ′ of two automorphisms gπ, gπ′ obtained in
this way. There are two important exceptions. One occurs if π happens to be a diagram
automorphisms, so that it does indeed permute the simple root spaces; we then see that the
group A of all such diagram automorphisms may be naturally identified with a subgroup
of the full automorphism group of L (but the nonidentity automorphisms in it are never
inner, so that A is not a subgroup of Int L). The other exception occurs if π sends all root
in Φ to their negatives. Then gπ will interchange the xα and −yα ∈ L−α for α ∈ ∆, while
sending hα to its negative; so the square of gπ is the identity automorphism. We call this
gπ a Chevalley automorphism. It turns out to be inner if and only if π lies in the Weyl
group of L.

In the special case where the automorphism π is an element of the Weyl group W , we
can give a much more direct construction of the Lie algebra automorphism gπ. It suffices
to do this in the case where π = sα, a single simple reflection, as we have seen that any
element of W is a product of such reflections. Here we can just choose xα ∈ Lα, yα ∈ L−α
in our usual way (so that xα, yα, hα = [xαyα] span a subalgebra Sα of L isomorphic to
sl(2)) and then set gπ = (exp ad xα)(exp ad −yα)(exp ad xα). We have already observed
that this automorphism acts on any Sα-module, interchanging its positive and negative
weight spaces, so sending any root space Lβ to Lsαβ , as required. Note that g2

π acts by
the scalar −1 on any even-dimensional irreducible Sα-module and the scalar 1 on any
odd-dimensional such module, so even in this case we usually do not have g2

π = 1, as we
would have to if W were a subgroup of Int L.

We now turn our attention to the possible dependence of the root system Φ of a
semisimple Lie algebra L on the choice of maximal toral subalgebra H. To show that L
alone determines Φ, it is enough to show that any two maximal toral subalgebras of L are
conjugate under Int L. To do this we need to digress briefly to say a few words about the
Zariski topology on Kn; the conjugacy result depends crucially on the algebraic closure of
K.

The closed subsets of Kn in the Zariski topology are by definition the sets of common
zeros of some collection S of polynomials in k[x1, . . . , xn]. Hence any nonempty open set
in this topology is the union of the set of nonzeros Nf of f for various nonzero polynomials
f , and the intersection of any two such sets contains Nf ∩ Ng = Nfg, so is nonempty.
This is a fundamental difference between the Zariski and (say) the Euclidean topologies on
(say) Cn. Now there is a theory of morphisms (polynomial maps) from Kn to Kn which
parallels the theory of smooth maps from Rn to Rn; any such map f has a differential
df mapping the tangent space of Kn at any point x to the tangent space of Kn at f(x).
If this last map is an isomorphism at x, then the image of f contains a nonempty open
subset of Kn containing f(x), which is dense in Kn by our previous remarks. Now let L



more generally be any Lie algebra over K and H a maximal toral subalgebra. Decompose
L under the action of H as ⊕α∈Ψ⊂H∗Lα as the sum of H-root spaces, by analogy with the
root space decomposition of a semisimple Lie algebra, though here we do not pull H off of
the direct sum, so that 0 is always one of our roots. Of course we cannot expect the subset
Ψ of H∗ to have any particular structure, but it is still a finite set. Fix a vector space
complement H ′′ to H in L0 = CL(H), the centralizer of H in L, and let H ′ consist of all
h ∈ H with α(h) 6= 0 for any nonzero α ∈ Ψ. Then the sum H = H ′ + H ′′ is a Zariski-
open subset of L0; we call its elements regular. Let b1 . . . , bm be a basis for ⊕α∈Ψ,α6=0Lα
obtained as the union of bases for each Lα and for k1, . . . , km ∈ K,h ∈ L0, x ∈ H ′ let
f(k1, . . . , km, h)(x) = (exp ad k1b1) . . . (exp ad kmbm)(x + h); this is a polynomial map
and counting dimensions shows that its differential is surjective at any x ∈ H ′. Now if
H1, H2 are two maximal toral subalgebras, then by applying this map we see that some
conjugate of a regular element of H1 is a regular element of H2, Passing to the set of
semisimple elements in the centralizers of these regular elements and using that the only
semisimple elements centralizing Hi lie in Hi, we get that H2 is conjugate to H1, as desired.
In particular, any two maximal toral subalgebras of a semisimple Lie algebra L have the
same dimension, called the rank of L.

At this point I should mention that maximal toral subalgebras of a semisimple Lie
algebra L are usually called Cartan subalgebras in the literature. They are actually defined
as nilpotent subalgebras H of L equal to their own normalizers, so that if [xH] ⊂ H for
some x ∈ L, then x ∈ H; but this definition turns out to be equivalent to that of maximal
toral subalgebra for semisimple L. In general, any Lie algebra L over an algebraically
closed field has Cartan subalgebras in this sense and any two of them are conjugate under
Int L.


