
Lecture 2-15

One last remark (for now) before we finally return to Lie algebras. Given a root system
Φ, what is its automorphism group (that is, the group of orthogonal transformations on
the ambient Euclidean space permuting the roots of Φ)? Any such automorphism g sends
a positive subsystem Φ+ of Φ to another such subsystem; then there is an element of w
of the Weyl group W sending the second subsystem to the first. The composition wg
is then an automorphism of Φ preserving a particular subsystem of positive roots, and
hence also the corresponding simple subsystem. It therefore acts on the Dynkin diagram
of Φ by an automorphism. Nontrivial such automorphisms exist (for connected Dynkin
diagrams) only in the cases An, Dn, and E6; in most of these cases there just one such
automorphism, of order 2, but in the very interesting case of D4 there are three “outer”
simple roots that can be permuted arbitrarily by diagram automorphisms, so the group of
diagram automorphisms is S3, the symmetric group on three letters. This group turns out
to act on the corresponding Lie algebra so(8) by a very interesting set of automomorphisms;
this phenomenon is called triality and can be used to give an explicit construction of the
exceptional Lie algebras starting with the classical algebra so(8) and using some of its
irreducible modules.

Now at last we take up Lie algebras again. The first point is to see that any Lie
algebra admitting a root space decomposition satisfying the axioms of a root system and
one other mild condition is semisimple. More precisely, suppose that a Lie algebra L admits
a grading H ⊕⊕α∈ΦLα, where H is an abelian subalgebra acting diagonally on the space
Lα by α ∈ H∗, the space Lα are one-dimensional, the set Φ is a root system in H∗, and
[LαLβ ] = Lα+β whenever α, β are two roots such that α+β ∈ Φ. Then L is semisimple. To
prove this, we can reduce to the case where Φ has a connected Dynkin diagram, as clearly
L is the direct sum of the subalgebras L′ corresponding to the connected components of Φ.
Now any nonzero ideal I of L, by a Vandermonde determinant argument, contains a root
vector lying in some Lα; by choosing an appropriate set of simple roots, we may assume
that α is simple, so that it corresponds to a vertex in the Dynkin diagram. Moving back
and forth between root spaces and H via repeated brackets, and moving from one vertex
in this diagram to its neighbors, we get the root space Lα in I for all simple roots α, as
well as L|−α ⊂ I. But now we saw last time that any positive root can be written as a
sum of simple roots in such a way that every partial sum is also a root; as a consequence,
the root spaces Lα for α simple generate all roots space Lβ for β positive, while similarly
the root spaces L−α generated L−β . The upshot is that all positive negative root spaces
of L lie in I, as does H, so finally I = L is simple, as claimed.

Now suppose that L,L′ are two simple Lie algebras (over the same field) with the same
root system. More precisely, suppose that there is a linear isomorphism π from a maximal
toral sualgebra H of L to a maximal toral subalgebra H ′ of L′ inducing an isomorphism
between the root systems Φ,Φ′ of L,L′, respectively. Choose simple subsystems ∆,∆′

of Φ,Φ′ so that this isomorphism maps ∆ onto ∆′ and choose nonzero vectors xα, x
′
α′

in Lα, L
′
α′ , respectively. Then there is a unique Lie algebra isomorphism from L to L′

extending π and sending xα to x−α′ for all α ∈ ∆.
To prove this, first choose nonzero yα ∈ L−α, y′α′ ∈ L′−α′ so that hα = [xαyα], h′α′ =

[xα′yα′ ] combine with xα, yα (respectively xα′ , yα′) to span subalgebras Sα, Sα′ of L,L′



both isomorphic to sl(2). Then π necessarily sends hα to hα′ , so the extension of π
necessarily sends yα to yα′ . Since the xα, yα together generate L we see at once that
the extension of π is unique, if it exists. To show that the extension exists, look at the
subalgebra D of the direct sum L⊕ L′ generated by all (xα, x

′
α′), (yα, y

′
α′ , (hα, h

′
α′); if the

extension exists, this must be a proper subalgebra isomorphic to both L and L′. Let β, β′

be the highest roots of L,L′ and choose nonzero xβ ∈ Lβ , x
′
β′ ∈ L′β′ . Let M ⊂ L ⊕ L′

be spanned by (x, x′) = (xβ , x
′
β′ and all vectors (v, v′) obtained from (x, x′) by applying

a product P of ad yα’s to x and the corresponding product P ′ of ad y′α′ ’s to x′, as α
ranges over ∆. Since the difference of two simple roots in Φ of Φ′ is never a root, one
checks inductively that M is stable under the actions of both (hα, h

′
α′) and (xα, x

′
α′) for

any α ∈ ∆, so M is a D-submodule. It is a proper subspace of L⊕L′ since its intersection
with the (β, β′) root space of this direct sum is only one-dimensional. But then D must be
a proper subalgebra of L⊕L′, as otherwise M would be an ideal of L⊕L′ and thus equal
to L or L′ (both of which are impossible). Once we know that D is a proper subalgebra, we
are done: simplicity of L and L′ guarantee that the kernel of either coordinate projection
when restricted to D is trivial, whence D is indeed isomorphic to both L and L′, as desired.

The theorem extends easily to semisimple Lie algebras L, by simply applying it to
each simple component of L. It shows that two semisimple Lie algebras with the same
root system are isomorphic, but it also shows more: given any automorphism π of the root
system Φ of a semisimple Lie algebra L and any choice of nonzero root vectors xα, xπα
from the α and πα root spaces of L, there is a unique automorphism of L acting on a
maximal toral subalgebra H by π and sending xα to xπα for every root α lying in a simple
subsystem of Φ. We will work out some consequences of this last fact on Wednesday.


