
Lecture 2-1

Picking up from last time, let L be a semisimple Lie algebra, H a maximal toral
subalgebra, and Φ the corresponding root system, so that the root space decomposition of
L is H⊕⊕α∈ΦLα. Last time we saw that all roots in Φ lie in a Q-vector space of dimension
dimK H. If α, β ∈ Φ, then (α, β) = κ(tα, tβ) =

∑
γ∈Φ(γ, α)(γ, β), by definition of κ. In

particular, (β, β) =
∑
γ∈Φ(γ, β)2. Dividing by (β, β) and using that all ratios 2(γβ)/(β, β)

are integers, we get that (β, β) ∈ Q, whence (α, β) ∈ Q for all α, β ∈ Φ. Then finally for
all nonzero λ ∈ EQ, the rational span of Φ, we have that (λ, λ) =

∑
α∈Φ(λ, α)2 is a sum of

squares of rational numbers and so is positive. Replacing EQ by ER, the real vector space
(formally) spanned by Φ, we see that (·, ·) induces a positive definite symmetric real-valued
bilinear form on ER, which we may identify with the usual dot product.

At this point we can forget about the Killing form and the basefield K. All that
matters is that we now have a finite collection Φ of vectors in Rn for some n that span Rn
and are such that if α ∈ Φ, then the only multiples of α lying in Φ are ±α, and if α, β ∈ Φ,
then β − 2(β, α)/(α, α)α ∈ Φ and 2(β, α)/(α, α) ∈ Z. We call any collection Φ of vectors
in some Rn satisfying these properties a (crystallographic) root system.

The expression 2(β, α)/(α, α) arises in linear algebra over Rn in the formula for a
reflection: if α ∈ Rn is nonzero, then the unique linear transformation sending α to −α
and any vector γ orthogonal to α to itself. (The hyperplane of vectors orthogonal to α is
called the reflecting hyperplane and this reflection is denoted sα; note that skα = sα for all
nonzero k). The subgroup W of the orthogonal group O(n,R) generated by all reflections
sα as α runs over Φ is called the Weyl group of Φ if Φ is crystallographic and its Coxeter
group in general; it is finite since it acts faithfully on the finite set Φ. The axioms of a
crystallographic root system can be weakened: if we do not require that 2(β, α)/(α, α) ∈ Z
for all α, β ∈ Φ, then we call Φ just a root system (though often in the literature root
systems are understood to be crystallographic). The crystallographic property amounts to
requiring that the root lattice, i.e. the Z-span of the roots, be preserved by the reflections
sα. We will classify crystallographic root systems next week and briefly indicate what the
non-crystallographic root systems are as well.

For now we return to the classical (linear) Lie algebras discussed in the first week and
compute their root systems. In all cases, we saw that the diagonal matrices in the Lie
algebra form an abelian subalgebra H of semisimple elements whose centralizer is just H
(as one sees by looking at the bases we constructed). Denoting the unit coordinate vectors
in Rn as usual by e1, . . . , en and the dot product by (·, ·), we note first that the reflection
sei−ej attached the difference of the ith and jth unit coordinate vectors acts on a vector
by flipping its ith and j coordinates; similarly, the reflection sei acts by changing the sign
of the ith coordinate, and the reflection sei+ej acts by flipping the ith and jth coordinates
and changing their signs.

We saw then the first week that the root system in type An−1 consists of all vectors
ei − ej as the distinct indices i, j run from 1 to n; notice again that the vector space they
span has dimension only n− 1, thus accounting for the n− 1 subscript. The root system
in type Bn consists of all vectors ei − ej as above together with all vectors ei + ej and ei;
now they span all of Rn. The root system in type Cn is the same as in type Bn, except
that the roots ei are replaced by 2ei. Finally, the root system in type Dn is the same as



in type Bn, omitting the roots ei. Now it is is very easy to see that the axioms of a root
system are indeed satisfied in all of these cases. We can give a uniform description of the
systems of types B,and D as follows: in both cases we take all vectors of the appropriate
square length or lengths in the lattice Zn sitting inside the Rn, using square length 2 for
type Dn and lengths 1 or 2 for type Bn. For An−1 we do the same as for Dn, replacing
Rn by the hyperplane consisting of all vectors whose coordinates sum to 0 and Zn by its
intersection with this hyperplane. In type Cn, we just start with the root system for type
Bn and replace the roots ei by 2ei, as mentioned above. Note that in this case roots of
square length 4 occur (but there are vectors of square length 4 in Zn which do not lie in
Φ).

In all the classical cases the Weyl group W is a familiar symmetry group: in type
An−1 it is the group Sn of permutations of n coordinates, of order n!; in types Bn and
Cn it consists of all permutations and sign changes of n coordinates and has order 2nn!;
and finally in type Dn it consists of all permutations and evenly many sign changes of n
coordinates and has order 2n−1n!

In the exceptional cases we again take vectors of one or two fixed square lengths in a
lattice. Our first new type is called E8; here we take the vectors of square length two in the
lattice in R8 spanned by all ei − ej , ei + ej , and (1/2)(1, . . . , 1): the lattice consists of all
vectors (a1, . . . , a8) where the coordinates ai are either all integers or all half-integers and
in addition

∑
ai is an even integer. The vectors in Φ consist of all sums ei+ej , differences

ei− ej , and vectors (±1/2, . . . ,±1/2), where evenly many 1/2s occur. There are 240 such
roots. There are two other types with the label E, namely E7 and E6; for E7 we take all
roots in E8 orthogonal to e7 + e8, while for E6 we take all roots in E8 orthogonal to both
e7 + e8 and e6 + e8. There are 126 roots in type E7 and 72 roots in type E6. Finally, we
have the root systems F4 and G2; for F4 we take all vectors of square length one or two
in the lattice in R4 spanned by the ei and (1/2, /1/2, 1/2, 1/2), consisting of all vectors of
the form ±ei,±ei ± ej for i 6= j and all vectors of the form (±1/2, . . . ,±1/2), where the
signs may be chosen independently. There are 48 roots. In G2 we take our ambient vector
space to be the hyperplane in R3 orthogonal to (1, 1, 1) and the lattice to be spanned by
e1 − e2, e2, e3. Take all vectors of square length 2 or 6 in this lattice, thereby obtaining
all differences ei− ej and ±(2,−1− 1),±(−1, 2,−1), and ±(−1,−1, 2). There are 12 such
roots.


