Lecture 1-9

Continuing from last time, we now study the classical algebras (those belonging to one of the series A_{n}, B_{n}, C_{n}, or D_{n}), in more detail. Recall that the matrix unit $e_{i j}$ has 1 as its $i j$-entry while all other entries are 0 . There is a simple rule for commutating two such units: $\left[e_{i j} e_{k \ell}\right]=\delta_{j k} e_{i \ell}-\delta_{\ell} i_{k j}$, where $\delta_{i j}$ is the Kronecker delta. In all cases the diagonal matrices will play a crucial role, since if d is diagonal than ad d will continue to act diagonalizably on the algebra containing d.

The simplest case is $L=\mathfrak{s l}(n)$ (type A_{n-1}). Here we have $\left[e_{i i} e_{i j}\right]=e_{i j}$, so that if $d=\sum_{i} d_{i} e_{i i}$, then $\left[d e_{i j}\right]=\left(E_{i}-E_{j}\right)(d) e_{i j}$, where E_{i} is the linear function on the space of diagonal matrices sending one of them to its $i i$-entry. Here we must have $\sum_{i} d_{i}=0$, since we are only looking at matrices with trace 0 . Thus the dimension of the subspace D of diagonal matrices has dimension $n-1$ rather than n; this is why we say that L is of type A_{n-1} rather than A_{n}. This subspace D is a subalgebra of L, in fact an abelian one where all brackets are 0 . (This will be true of the subspace D in all the other classical algebras). Here L is spanned by D together with all matrix units $e_{i j}$ with $i \neq j$. The dimension of L is thus $n^{2}-1$.

In all the other families of examples, there is a matrix M such that the Lie algebra consists of all matrices X that are skew-adjoint with respect to the from $(c d o t, \cdot)$ given by $(v, w)=v^{t} M w$, where the superscript t as usual denotes transpose, so that v^{t} is a row vector while w is a column one. Skew-adjointness with respect to this form translates to the condition on X that $M X=-X^{t} M$. We now consider each of the cases in turn.

Starting with $L=\mathfrak{s p}(2 n)$ (type C_{n}), the condition $M X=-X^{t} M$ says that the upper left $n \times n$ block m of X should be the negative transpose $-q^{T}$ of the lower right block q, while the upper right and lower left blocks n, p should equal their own transposes. Hence a typical diagonal matrix d in L takes the form $d=\sum_{i} d_{i} e_{i i}$, where $d_{n+i}=-d_{i}$ for $1 \leq i \leq n$. Letting E_{i} as above be the linear function sending $\sum_{i} d_{i} e_{i i}$ to d_{i} (for $1 \leq i \leq n$ only), we find that M is spanned by D together with the differences $\ell_{i j}=e_{i j}-e_{n+1, n+j}$ (for $1 \leq i, j \leq n, i \neq j$), the sums $\ell_{i j}^{\prime}=e_{i, n+j}+e_{j, n+i}$ (for $1 \leq i<j \leq n$), their transposes $\ell_{i j}^{\prime \prime}=e_{n+j, i}+e_{n+i, j}$, and the units $\ell_{i}=e_{i, n+i}$ and their transposes $\ell_{i}^{\prime}=e_{n+i, i}$. Then $\left[d \ell_{i j}\right]$ equals $\left(E_{i}+E_{j}\right)(d) \ell_{i j}$ if $i<j$ and $\left(-E_{i}-E_{j}\right)(d) \ell_{i j}$ if $j<i$, while $\left[d \ell_{i j}^{\prime}\right]=$ $\left(E_{i}-E_{j}\right)(d) \ell_{i j}^{\prime},\left[d \ell_{i j}^{\prime \prime}=\left(E_{j}-E_{i}\right) \ell_{i j}^{\prime \prime},\left[d \ell_{i}\right]=2 E_{i}(d) \ell_{i},\left[d \ell_{i}^{\prime}=-2 E_{i}(d) \ell_{i}^{\prime}\right.\right.$. The dimension of L is $n+n^{2}-n+2\left(n+(1 / 2)\left(n^{2}-n\right)\right)=2 n^{2}+n$; the dimension of D is n.

Now consider $L=\mathfrak{s o}(2 n+1)$ (type B_{n}). Now the condition $M X=-X^{t} M$ says that X has 0 as its11-entry; the remaining blocks of entries b_{1}, b_{2} in its first row are the respective negative transposes of c_{2}, c_{1}, the remaining blocks of entries in its first column. The remainder of X consists of four blocks m, n, p, q as in the previous case, but this time with $q=-m^{T}, n^{T}=-n, p^{T}=-p$. Here D consists of all sums $\sum_{i} a_{i} e_{i i}$ with $d_{1}=$ $0, d_{n+i}=-d_{i}$ for $2 \leq i \leq n+1$ and L is spanned by D together with all differences $\ell_{i j}=$ $e_{i+1, j+1}-e_{n+j+1, n+i+1}($ for $1 \leq i, j \leq n, i \neq j)$, all differences $\ell_{i j}^{\prime}=e_{i+1, n+j+1}-e_{j+1, n+i+1}$ (for $1 \leq i<j \leq n$), all differences $\ell_{i j}^{\prime \prime}=e_{n+i+1, j+1}-e_{n+j+1, i+1}$ (for $1 \leq j<i \leq n$), and all differences $\ell_{i}=e_{1, n+1+i}-e_{i+1,1}, \ell_{i}^{\prime}=e_{1, i+1}-e_{n+1+1,1}$ (for $1 \leq i \leq n$). We have $\left[d, \ell_{i j}\right]=\left(\pm\left(E_{i}+E_{j}\right)(d) \ell_{i j}\right.$ (according as $i<j$ or $j<i$, as before), while we have $\left[d, \ell_{i j}^{\prime}\right]=\left(E_{i}-E_{j}\right)(d) \ell_{i j}^{\prime},\left[d \ell_{i j}^{\prime \prime}\right]=\left(E_{i}-E_{j}\right)(d) \ell_{i j}^{\prime \prime},\left[d \ell_{i}\right]=E_{i}(d) \ell_{i},\left[d \ell_{i}^{\prime}\right]=-E_{i}(d) \ell_{i}^{\prime}$, where $E_{i}(d)=d_{i+1}$ for $1 \leq i \leq n$. Here the dimension of D is again n and the dimension of L is
again $2 n^{2}+n$. Notice that we get the same linear functions arising on D as in type C_{n}, except that $\pm 2 E_{i}$ is replaced by E_{i}.

Finally, we have $L=\mathfrak{s o}(2 n)$ (type D_{n}), where the matrices take the same form as in the previous paragraph, except that the first row and column of those matrices are omitted. The dimension of L is now $2 n^{2}-n$ while the dimension of D is again n; the linear functions on D now arising are now $\pm E_{i} \pm E_{j}$ for $1 \leq i, j \leq n, i \neq j$ (so that both E_{i} and $2 E_{i}$ are omitted).

We have now met all but finitely many of the basic objects of study of the course! We conclude with a construction of the groups corresponding to our Lie algebras, again echoing what is done in manifold theory, but with a new twist. Let A be a finite-dimensional algebra over a field K of characteristic 0 (so that we are free to divide by any nonzero integer in K) and let d be a nilpotent derivation on A, so that d^{n} is the 0 map on A for some n. We can then set up the usual power series definition of the exponential $\exp d=\sum_{i=0}^{n} d^{i} / i$!, taking d^{0} as usual to be the identity map; this makes sense without any completeness assumption on K since it has only finitely many terms. Then the usual formal calculation as in the case $K=\mathbb{R}$ or \mathbb{C}, not assuming that d is nilpotent and taking the full power series expansion $\sum_{i=0}^{\infty} d^{i} / i$! of $\exp d$, shows that $\exp d$ is an automorphism of A : $\exp d(a) \exp d(b)=\exp d(a b)$ for $a, b \in A$. The inverse of $\exp d$ is $\exp -d$. In particular, $\exp \operatorname{ad} x$ is an automorphism of any Lie algebra L over a field K of characteristic 0 if ad x acts nilpotently on L. Now it turns out that if K in addition is algebraically closed, then the group generated by all exp ad x where ad x is nilpotent can do everything that the group generated by all exp ad x for arbitrary x can do if $K=\mathbb{C}$. We call it the adjoint group of L and denote it (for mysterious reasons) by Int L. This group will be used at several crucial points in what follows. For now we observe that if $L=\mathfrak{s l}(n, \mathbb{C})$, then its adjoint group G is $P S L(n, \mathbb{C})$ the quotient of group $S L(n, \mathbb{C})$ of $n \times n$ matrices of determinant one by its center, a cyclic group of order n. If $L=\mathfrak{s o}(n)$ then $G=P S O(n, \mathbb{C})$, the quotient of the group of $n \times n$ orthogonal matrices of determinant 1 by its center (trivial if n is odd, cyclic of order 2 if n is even). Finally, if $L=\mathfrak{s p}(2 n, \mathbb{C})$, then $G=\operatorname{PSp}(2 n, \mathbb{C})$, the group of complex symplectic $2 n \times 2 n$ matrices modulo its center (again of order two).

