Lecture 1-9

Continuing from last time, we now study the classical algebras (those belonging to
one of the series A,, B,,,Cy, or D,,), in more detail. Recall that the matrix unit e;; has
1 as its 7j-entry while all other entries are 0. There is a simple rule for commutating two
such units: [e;jere] = djreie — doiey;, where §;; is the Kronecker delta. In all cases the
diagonal matrices will play a crucial role, since if d is diagonal than ad d will continue to
act diagonalizably on the algebra containing d.

The simplest case is L = sl(n) (type A,—1). Here we have [e;;e;;] = €;;, so that if
d =), die;, then [de;;| = (E; — Ej;)(d)e;;, where E; is the linear function on the space of
diagonal matrices sending one of them to its ii-entry. Here we must have ) . d; = 0, since
we are only looking at matrices with trace 0. Thus the dimension of the subspace D of
diagonal matrices has dimension n — 1 rather than n; this is why we say that L is of type
A, _1 rather than A,,. This subspace D is a subalgebra of L, in fact an abelian one where
all brackets are 0. (This will be true of the subspace D in all the other classical algebras).
Here L is spanned by D together with all matrix units e;; with ¢ # j. The dimension of L
is thus n? — 1.

In all the other families of examples, there is a matrix M such that the Lie algebra
consists of all matrices X that are skew-adjoint with respect to the from (cdot, -) given by
(v,w) = v*Mw, where the superscript ¢ as usual denotes transpose, so that v' is a row
vector while w is a column one. Skew-adjointness with respect to this form translates to
the condition on X that M X = —X*M. We now consider each of the cases in turn.

Starting with L = sp(2n) (type C,), the condition MX = —X'M says that the
upper left n x n block m of X should be the negative transpose —q” of the lower right
block g, while the upper right and lower left blocks n, p should equal their own transposes.
Hence a typical diagonal matrix d in L takes the form d = ), d;e;;, where d,,4; = —d; for
1 < i < n. Letting E; as above be the linear function sending ZZ diej; tod; (for 1 <i<mn
only), we find that M is spanned by D together with the differences £;; = e;; — ept1,n+j
(for 1 < i,j < n,i # j), the sums £3; = €ipnyj + €jnti (for 1 < i < j < n), their
transposes E;’J = €n+j,i T €nti,j, and the units ¢; = €; 1, and their transposes ¢, = e, ;.
Then [d&]] equals (El —+ EJ)(d)Ew if 1 < J and (_Ez — E])(d>£” lfj < 1, while [dﬁ;]] =
Lisn+n?—n+2(n+(1/2)(n? —n)) = 2n% + n; the dimension of D is n.

Now consider L = so(2n + 1) (type B,). Now the condition MX = —X'M says
that X has 0 as itsll-entry; the remaining blocks of entries by, by in its first row are the
respective negative transposes of co, ¢1, the remaining blocks of entries in its first column.
The remainder of X consists of four blocks m,n,p,q as in the previous case, but this
time with ¢ = —m”,n”T = —n,p’ = —p. Here D consists of all sums >, aieq; with dy =
0,dn4i = —d; for 2 <¢ <n+1 and L is spanned by D together with all differences ¢;; =
€it1,j+1—Cntjt+intit1 (for 1 <, <mn,i# j), all differences £j; = €; 41 n+j+1—€j41,n+it1
(for 1 <7 < j < n), all differences E;'J = €ptitl j+1 — €ntjt1,i+1 (for 1 < j < i < n),
and all differences Ez = €1n+1+i — €i+171,£;~ = €1,i+1 — En4+1+1,1 (fOI‘ 1 S 1 S TL) We
have [d, 4;;] = (£(E; + E;)(d)¢;; (according as i < j or j < i, as before), while we have
4.1 = (B — E;)(d)t;, [A8] = (E; — E;)(d)e, [d6:] = E(d)ts, [4€]] = —Ey(d)E}, where

E;(d) = d;4; for 1 <i < n. Here the dimension of D is again n and the dimension of L is



again 2n? + n. Notice that we get the same linear functions arising on D as in type C,,,
except that +2F; is replaced by F;.

Finally, we have L = so(2n) (type D,,), where the matrices take the same form as
in the previous paragraph, except that the first row and column of those matrices are
omitted. The dimension of L is now 2n? — n while the dimension of D is again n; the
linear functions on D now arising are now +FE; £ E; for 1 <4,j < n,i # j (so that both
E; and 2F; are omitted).

We have now met all but finitely many of the basic objects of study of the course!
We conclude with a construction of the groups corresponding to our Lie algebras, again
echoing what is done in manifold theory, but with a new twist. Let A be a finite-dimensional
algebra over a field K of characteristic 0 (so that we are free to divide by any nonzero
integer in K') and let d be a nilpotent derivation on A, so that d" is the 0 map on A
for some n. We can then set up the usual power series definition of the exponential
exp d = Z?:o d'/i!, taking d° as usual to be the identity map; this makes sense without
any completeness assumption on K since it has only finitely many terms. Then the usual
formal calculation as in the case K = R or C, not assuming that d is nilpotent and taking
the full power series expansion Y . d’/i! of exp d, shows that exp d is an automorphism of
A: exp d(a)exp d(b) =exp d(ab) for a,b € A. The inverse of exp d is exp —d. In particular,
exp ad x is an automorphism of any Lie algebra L over a field K of characteristic 0 if ad x
acts nilpotently on L. Now it turns out that if K in addition is algebraically closed, then the
group generated by all exp ad x where ad x is nilpotent can do everything that the group
generated by all exp ad x for arbitrary x can do if K = C. We call it the adjoint group
of L and denote it (for mysterious reasons) by Int L. This group will be used at several
crucial points in what follows. For now we observe that if L = sl(n,C), then its adjoint
group G is PSL(n,C) the quotient of group SL(n,C) of n x n matrices of determinant one
by its center, a cyclic group of order n. If L = so(n) then G = PSO(n,C), the quotient of
the group of n x n orthogonal matrices of determinant 1 by its center (trivial if n is odd,
cyclic of order 2 if n is even). Finally, if L = sp(2n,C), then G =PSp(2n, C), the group of
complex symplectic 2n x 2n matrices modulo its center (again of order two).



