
Lecture 1-9

Continuing from last time, we now study the classical algebras (those belonging to
one of the series An, Bn, Cn, or Dn), in more detail. Recall that the matrix unit eij has
1 as its ij-entry while all other entries are 0. There is a simple rule for commutating two
such units: [eijek`] = δjkei` − δ`iekj , where δij is the Kronecker delta. In all cases the
diagonal matrices will play a crucial role, since if d is diagonal than ad d will continue to
act diagonalizably on the algebra containing d.

The simplest case is L = sl(n) (type An−1). Here we have [eiieij ] = eij , so that if
d =

∑
i dieii, then [deij ] = (Ei −Ej)(d)eij , where Ei is the linear function on the space of

diagonal matrices sending one of them to its ii-entry. Here we must have
∑

i di = 0, since
we are only looking at matrices with trace 0. Thus the dimension of the subspace D of
diagonal matrices has dimension n− 1 rather than n; this is why we say that L is of type
An−1 rather than An. This subspace D is a subalgebra of L, in fact an abelian one where
all brackets are 0. (This will be true of the subspace D in all the other classical algebras).
Here L is spanned by D together with all matrix units eij with i 6= j. The dimension of L
is thus n2 − 1.

In all the other families of examples, there is a matrix M such that the Lie algebra
consists of all matrices X that are skew-adjoint with respect to the from (cdot, ·) given by
(v, w) = vtMw, where the superscript t as usual denotes transpose, so that vt is a row
vector while w is a column one. Skew-adjointness with respect to this form translates to
the condition on X that MX = −XtM . We now consider each of the cases in turn.

Starting with L = sp(2n) (type Cn), the condition MX = −XtM says that the
upper left n × n block m of X should be the negative transpose −qT of the lower right
block q, while the upper right and lower left blocks n, p should equal their own transposes.
Hence a typical diagonal matrix d in L takes the form d =

∑
i dieii, where dn+i = −di for

1 ≤ i ≤ n. Letting Ei as above be the linear function sending
∑

i dieii to di (for 1 ≤ i ≤ n
only), we find that M is spanned by D together with the differences `ij = eij − en+1,n+j

(for 1 ≤ i, j ≤ n, i 6= j), the sums `′ij = ei,n+j + ej,n+i (for 1 ≤ i < j ≤ n), their
transposes `′′ij = en+j,i + en+i,j , and the units `i = ei,n+i and their transposes `′i = en+i,i.
Then [d`ij ] equals (Ei + Ej)(d)`ij if i < j and (−Ei − Ej)(d)`ij if j < i, while [d`′ij ] =
(Ei − Ej)(d)`′ij , [d`

′′
ij = (Ej − Ei)`

′′
ij , [d`i] = 2Ei(d)`i, [d`

′
i = −2Ei(d)`′i. The dimension of

L is n+ n2 − n+ 2(n+ (1/2)(n2 − n)) = 2n2 + n; the dimension of D is n.
Now consider L = so(2n + 1) (type Bn). Now the condition MX = −XtM says

that X has 0 as its11-entry; the remaining blocks of entries b1, b2 in its first row are the
respective negative transposes of c2, c1, the remaining blocks of entries in its first column.
The remainder of X consists of four blocks m,n, p, q as in the previous case, but this
time with q = −mT , nT = −n, pT = −p. Here D consists of all sums

∑
i aieii with d1 =

0, dn+i = −di for 2 ≤ i ≤ n+ 1 and L is spanned by D together with all differences `ij =
ei+1,j+1−en+j+1,n+i+1 (for 1 ≤ i, j ≤ n, i 6= j), all differences `′ij = ei+1,n+j+1−ej+1,n+i+1

(for 1 ≤ i < j ≤ n), all differences `′′ij = en+i+1,j+1 − en+j+1,i+1 (for 1 ≤ j < i ≤ n),
and all differences `i = e1,n+1+i − ei+1,1, `

′
i = e1,i+1 − en+1+1,1 (for 1 ≤ i ≤ n). We

have [d, `ij ] = (±(Ei + Ej)(d)`ij (according as i < j or j < i, as before), while we have
[d, `′ij ] = (Ei − Ej)(d)`′ij , [d`

′′
ij ] = (Ei − Ej)(d)`′′ij , [d`i] = Ei(d)`i, [d`

′
i] = −Ei(d)`′i, where

Ei(d) = di+1 for 1 ≤ i ≤ n. Here the dimension of D is again n and the dimension of L is



again 2n2 + n. Notice that we get the same linear functions arising on D as in type Cn,
except that ±2Ei is replaced by Ei.

Finally, we have L = so(2n) (type Dn), where the matrices take the same form as
in the previous paragraph, except that the first row and column of those matrices are
omitted. The dimension of L is now 2n2 − n while the dimension of D is again n; the
linear functions on D now arising are now ±Ei ± Ej for 1 ≤ i, j ≤ n, i 6= j (so that both
Ei and 2Ei are omitted).

We have now met all but finitely many of the basic objects of study of the course!
We conclude with a construction of the groups corresponding to our Lie algebras, again
echoing what is done in manifold theory, but with a new twist. Let A be a finite-dimensional
algebra over a field K of characteristic 0 (so that we are free to divide by any nonzero
integer in K) and let d be a nilpotent derivation on A, so that dn is the 0 map on A
for some n. We can then set up the usual power series definition of the exponential
exp d =

∑n
i=0 d

i/i!, taking d0 as usual to be the identity map; this makes sense without
any completeness assumption on K since it has only finitely many terms. Then the usual
formal calculation as in the case K = R or C, not assuming that d is nilpotent and taking
the full power series expansion

∑∞
i=0 d

i/i! of exp d, shows that exp d is an automorphism of
A: exp d(a)exp d(b) = exp d(ab) for a, b ∈ A. The inverse of exp d is exp −d. In particular,
exp ad x is an automorphism of any Lie algebra L over a field K of characteristic 0 if ad x
acts nilpotently on L. Now it turns out that if K in addition is algebraically closed, then the
group generated by all exp ad x where ad x is nilpotent can do everything that the group
generated by all exp ad x for arbitrary x can do if K = C. We call it the adjoint group
of L and denote it (for mysterious reasons) by Int L. This group will be used at several
crucial points in what follows. For now we observe that if L = sl(n,C), then its adjoint
group G is PSL(n,C) the quotient of group SL(n,C) of n×n matrices of determinant one
by its center, a cyclic group of order n. If L = so(n) then G = PSO(n,C), the quotient of
the group of n× n orthogonal matrices of determinant 1 by its center (trivial if n is odd,
cyclic of order 2 if n is even). Finally, if L = sp(2n,C), then G =PSp(2n,C), the group of
complex symplectic 2n× 2n matrices modulo its center (again of order two).


