
Lecture 1-7

Welcome to the wonderful world of Lie algebras! I love these objects and hope I can
convey to you why they are so exciting. Most of you will have seen Lie algebras before in
a course on manifolds; in such a course they are usually introduced as derivations on the
algebra of C∞ real-valued functions on a Lie group, identifying two such functions if they
agree on a neighborhood of the identity. Now in this course I will neither assume nor use
any manifold theory, but those who have been exposed to such theory will see a couple of
echoes of it in this week’s lectures (but no further echoes thereafter). Accordingly, let A
be an algebra over a field K and let d : A→ A be a derivation of A, so that d is linear over
K and satisfies the product rule d(ab) = d(a)b + ad(b). The set Der A of all derivations
is not closed under product (as you might expect), but it is closed under the commutator
or bracket: if d and e are derivations, then so is [de] = de − ed. Also of course we could
define a new operation [·, ·] on A itself via [xy] = xy−yx; this operation provides a natural
measure of the noncommutativity of A. It makes sense, for example, if A = M(n,C), the
vector space of n×n matrices over C; in fact we are primarily interested in derivations on
finite-dimensional algebras. Our starting point is the study of this operation (motivated by
its appearance as the Lie bracket in manifold theory). To begin with, we observe that the
bracket operation is neither commutative nor associative. It still satisfies the distributive
law in both arguments, however (that is, it is complex linear in both arguments). In place
of the commutative law we have the pair of properties [x, x] = 0, [x, y] = −[y, x]; notice
that the second of these follows from the first applied to [x + y, x + y]. In place of the
associative law we have the Jacobi identity [x[yz]] + [y[zx]] + [z[xy]] = 0, which we may
rewrite as [[xy]z] + [y[xz] = [x[yz]]; this last equation says exactly that commutation with
x, a linear map which we will denote by ad x, satisfies the product rule on brackets. We
therefore define a Lie algebra L over any field K to be a (finite-dimensional for us) K-
vector space endowed with a K-bilinear bracket [·, ·] from L × L to L satisfying [xx] = 0
for all x ∈ L (anticommutativity) and the Jacobi identity. We say that L′ ⊂ L is a (Lie)
subalgebra of L if it is a K-subspace closed under the bracket; we say that I ⊂ L is an
ideal if it is a subalgebra such that [xy] ∈ I if x ∈ I (or y ∈ I, by anticommutativity. If I
is an ideal of L, then we can make the quotient space L/I into a Lie algebra in the usual
way, by decreeing that [x+I, y+I] = [xy]+I. The notion of a Lie algebra homomorphism
π : L→ L′ between two Lie algebras L,L′ over the same field K is defined in the obvious
way; the kernel I of any such map is an ideal of L and if this map is surjective it induces
an isomorphism from L/I to L′.

We are naturally most interested in really new examples; that is, in Lie algebras
that are not associative algebras under any natural product operation, but which admit
a bracket operation satisfying the axioms. Probably the easiest of these is sl(n), which
consists by definition of all n×n matrices over K of trace 0. Recalling that the trace of the
ordinary product AB of any two n× n matrices equals the trace of BA, we see that sl(n)
is indeed a Lie subalgebra of the Lie algebra gl(n) of all n× n matrices over K (which we
denoted by M(n,K) above). This Lie algebra arises frequently and is said to be of type
An−1; the reason for the index shift by −1 will emerge later. We will eventually classify a
large and important class of Lie algebras called semisimple; this classification will use the
letters A, . . . , G together with numerical subscripts. Thus sl(n) is our first example of a



semisimple Lie algebra.
Addtional semisimple Lie algebras arise as subalgebras of gl(n) (such Lie algebras, by

the way, are called linear). Let (·, ·) be a nondegenerate bilinear form on the vector space
Kn that is either symmetric (so that (v, w) = (w, v) for v, w ∈ Kn; the most familiar
example is the ordinary dot product), or skew-symmetric (so that (v, w) = −(w, v); here
one typically does not see any examples as an undergraduate, but we will construct such
forms later this week. They live only in even dimensions n = 2m.) In all cases we
take the set of all n × n matrices X that are skew-adjoint relative to the form, so that
(Xv,w) = −(v,Xw) for all v, w ⊂ Kn. One easily checks that the set of such matrices is
not closed under product, but it is closed under commutation, so it is indeed a Lie algebra.
If n = 2m + 1 is odd and (·, ·) is symmetric, then we get (by definition) the orthogonal
Lie algebra so(2m+ 1) of type Bm; if (·, ·) is symmetric but n = 2m is even, then we get
the orthogonal Lie algebra so(2m) of type Dm. These two cases turn out to be different
enough that they indeed merit separate labels. The other possibility is that (·, ·) is skew-
symmetric; in this case n = 2m is necessarily even, as mentioned above. The Lie algebra
is the symplectic one sp(2m) of type Cm; oddly enough, in some ways type Cm behaves
more like type Bm than type Dm.

More explicitly, we can realize the form (·, ·) giving rise to the algebra so(2m+ 1) via
the matrix sm having a 1 as its 11 entry, 0s elsewhere in its first row and column, two
blocks, the first a copy of the m ×m zero matrix and the second a copy of the identity
matrix Im immediately below its first row, and then the same two blocks in reverse order
just below these blocks; note that sm is a symmetric (2m + 1) × (2m + 1) matrix (see
p. 3 of the text). We define the form from the matrix sm via (v, w) = vT sm w, writing
w as a column vector and vT as a row vector. Since sm is symmetric and invertible the
resulting form is indeed symmetric and nondegenerate. The algebra so(2m) is defined via
the symmetric 2m × 2m matrix s′m in the same way, where s′m is obtained from sm by
omitting the first row and column. We will see next time why it is better to use sm and
s′m than the more obvious choices of I2m+1 and I2m, respectively. The algebra sp(2m) is
defined in the same way via the skew-symmetric matrix s′′m, obtained from s′m by replacing
the copy of Im in the lower left corner by −Im.


