Lecture 1-30

Let H be a maximal toral subalgebra of the semisimple Lie algebra L. Then we have the root space decomposition $L=\oplus_{\alpha \in H^{*}} L_{\alpha}$ from last time, where L_{α} consists of the $x \in L$ such that $[h x]=\alpha(h) x$ for all $h \in H$ and only finitely many root spaces L_{α} are nonzero. The Jacobi identity shows that $\left[L_{\alpha} L_{\beta}\right] \subset L_{\alpha+\beta}$; it follows that if $x \in L_{\alpha}, y \in L_{\beta}$ and $\alpha+\beta \neq 0$, then ad x ad y acts nilpotently on L so has trace 0 . Hence the root spaces L_{α}, L_{β} are orthogonal under the Killing form κ whenever $\beta \neq-\alpha$. Since κ is nondegenerate on L, we see that α is a root of H in L (that is, $L_{\alpha} \neq 0$) if and only if $-\alpha$ is a root and the restriction of κ to L_{0}, the centralizer of H in L, is nondegenerate. We claim that $C=L_{0}=H$; clearly $H \subset C$ since H is abelian. If $x \in L$ centralizes H, then so do its semisimple and nilpotent parts x_{s}, x_{n}; we must have $x_{s} \in H$ since H is maximal toral, while $\kappa\left(x_{n}, h\right)=0$ for all $h \in H$ since ad x_{n} and ad h are commuting linear maps with ad x_{n} nilpotent. It follows that κ is nondegenerate on H and the κ-orthogonal complement to H in C is exactly $H_{n}=\left\{x_{n}: x \in H\right\}$, so that H_{n} is a subalgebra of L. But then this subalgebra consists of ad-nilpotent elements, whence it acts on L by upper triangular matrices, forcing $\kappa(x, y)=0$ for all $x, y \in H_{n}$. Nondegeneracy of κ on C now forces $H_{n}=0, C=H$, as desired.

Pulling off the 0-root space H separately, we can rewrite the root space decomposition of L relative to H in its standard form as $L=H \oplus \oplus_{\alpha \in \Phi} L_{\alpha}$, where Φ consists of all nonzero $\alpha \in H^{*}$ with $L_{\alpha} \neq 0$. We call Φ the root system of L and its elements roots; as defined above Φ depends on the choice of H, but we will later see that it is essentially independent of this choice. Since κ is nondegenerate on H, this form allows us to identify H with H^{*}; to every $\alpha \in H^{*}$ there corresponds $t_{\alpha} \in H$ such that $\alpha(h)=\kappa\left(t_{\alpha}, h\right)$ for all $h \in H$. We can also transfer to H^{*} the restriction of κ to H, decreeing that $(\alpha, \beta)=\kappa\left(t_{\alpha}, t_{\beta}\right)$ for $\alpha, \beta \in H^{*}$. We have seen that $\alpha \in \Phi$ if and only if $-\alpha \in \Phi$; an easy argument using associativity and nondegeneracy of κ shows that $\left[L_{\alpha}, L_{-\alpha}\right.$] is one-dimensional with basis t_{α} for all $\alpha \in \Phi$; we cannot have $\left[L_{\alpha} L_{-\alpha}\right]=0$ since then ad x, ad y would be commuting nilpotent linear maps for $x \in L_{\alpha}, y \in L_{-\alpha}$, forcing $\kappa\left(L_{\alpha}, L_{-\alpha}\right)=0$ and contradicting nondegeneracy. Moreover we cannot have $\alpha\left(t_{\alpha}\right)=0$, for otherwise we could find $x \in L_{\alpha}, y \in L_{-\alpha}$ with $[x y]=t_{\alpha},\left[t_{\alpha} x\right]=\left[t_{\alpha} y\right]=0$, forcing x, y, t_{α} to span a solvable subalgebra S of L with $t_{\alpha} \in[S S], t_{\alpha}$ nilpotent, contradicting $t_{\alpha} \in H, t_{\alpha} \neq 0$. It follows for every nonzero $x_{\alpha} \in L_{\alpha}$ there is a nonzero $y_{\alpha} \in L_{-\alpha}$ with $\left.x_{\alpha} y_{\alpha}\right]=h_{\alpha}=2 t_{\alpha} /(\alpha, \alpha)\left[h_{\alpha} x_{\alpha}\right]=2 x_{\alpha},\left[h y_{\alpha}\right]=-2 y_{\alpha}$, so that $x_{\alpha}, y_{\alpha}, h_{\alpha}$ span a subalgebra S_{α} of L isomorphic to $\mathfrak{s l}(2, K)$. Thus any semisimple Lie algebra is built up out of copies of $\mathfrak{s l}(2, K)$; the $\alpha \in \Phi$ span all of H^{*}, since otherwise some nonzero $h \in H$ would centralize all of L.

Now we are in a position to apply our knowledge of the finite-dimensional representation theory of $\mathfrak{s l}(2, K)$. First let $\alpha \in \Phi$ and consider the sum R_{α} of H and the root spaces $L_{c \alpha}$ where c runs through the nonzero elements of K with $c \alpha \in \Phi$. Then R_{α} is a module for the copy S_{α} of $\mathfrak{s l}(2, K)$ in L constructed in the previous paragraph. The toral subalgebra H accounts for all occurrences of the weight 0 in R_{α}. The codimension-one subspace Ker α of H is centralized by S_{α}; the only other occurrence of the weight 0 comes from h_{α}, which lies in S_{α} itself. Thus the weight 2 occurs only once in R_{α} (as that of x_{α}) and higher even weights do not occur. In particular, we must have $L_{2 \alpha}=0$: twice a root is never a root. But then $(1 / 2) \alpha$ is not a root either; the weights of R_{α} consists of 0 with
multiplicity $\operatorname{dim} H$ and 2 with multiplicity one. It follows that all root spaces L_{α} have dimension one and the only multiples of a root α that are roots are $\pm \alpha$.

Now extend the action of S_{α} to all of L. If β is a root, then $\beta\left(h_{\alpha}\right)$ is a weight of L relative to S_{α}, forcing $\beta\left(h_{\alpha}\right) \in \mathbb{Z}$. But now the weights in any finite-dimensional $S_{\alpha^{-}}$ module occur in pairs $\pm m$, with a weight vector for one of these weights obtained from a weight vector for the other one by bracketing repeatedly with either x_{α} or y_{α}. We deduce that if $\alpha, \beta \in \Phi$, then $\beta-\beta\left(h_{\alpha}\right) \alpha \in \Phi$, with. $\beta\left(h_{\alpha}\right) \in \mathbb{Z}$.

Finally, let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis of H^{*} consisting of roots. Given $\beta \in \Phi$, write $\beta=\sum_{i=1}^{n} c_{i} \alpha_{i}$; then I claim that all $c_{i} \in \mathbb{Q}$. To see this, pair both sides of $\beta=\sum c_{i} \alpha_{i}$ with any α_{j} under the form (\cdot, \cdot) and divide by $\left(\alpha_{j}, \alpha_{j}\right)$. We get a linear system of equations with rational coefficients in the c_{i} with a unique solution in K; that unique solution must then lie in the copy of \mathbb{Q} inside K. Thus all roots lie in a rational subspace of H^{*} of dimension $\operatorname{dim}_{K} H^{*}$. We will wrap up the remaining key properties of roots and look at examples of root systems next time.

