
Lecture 1-30

Let H be a maximal toral subalgebra of the semisimple Lie algebra L. Then we have
the root space decomposition L = ⊕α∈H∗Lα from last time, where Lα consists of the
x ∈ L such that [hx] = α(h)x for all h ∈ H and only finitely many root spaces Lα are
nonzero. The Jacobi identity shows that [LαLβ ] ⊂ Lα+β ; it follows that if x ∈ Lα, y ∈ Lβ
and α + β 6= 0, then ad x ad y acts nilpotently on L so has trace 0. Hence the root
spaces Lα, Lβ are orthogonal under the Killing form κ whenever β 6= −α. Since κ is
nondegenerate on L, we see that α is a root of H in L (that is, Lα 6= 0) if and only if
−α is a root and the restriction of κ to L0, the centralizer of H in L, is nondegenerate.
We claim that C = L0 = H; clearly H ⊂ C since H is abelian. If x ∈ L centralizes H,
then so do its semisimple and nilpotent parts xs, xn; we must have xs ∈ H since H is
maximal toral, while κ(xn, h) = 0 for all h ∈ H since ad xn and ad h are commuting linear
maps with ad xn nilpotent. It follows that κ is nondegenerate on H and the κ-orthogonal
complement to H in C is exactly Hn = {xn : x ∈ H}, so that Hn is a subalgebra of L.
But then this subalgebra consists of ad-nilpotent elements, whence it acts on L by upper
triangular matrices, forcing κ(x, y) = 0 for all x, y ∈ Hn. Nondegeneracy of κ on C now
forces Hn = 0, C = H, as desired.

Pulling off the 0-root space H separately, we can rewrite the root space decomposition
of L relative to H in its standard form as L = H⊕⊕α∈ΦLα, where Φ consists of all nonzero
α ∈ H∗ with Lα 6= 0. We call Φ the root system of L and its elements roots; as defined
above Φ depends on the choice of H, but we will later see that it is essentially independent
of this choice. Since κ is nondegenerate on H, this form allows us to identify H with H∗;
to every α ∈ H∗ there corresponds tα ∈ H such that α(h) = κ(tα, h) for all h ∈ H. We can
also transfer to H∗ the restriction of κ to H, decreeing that (α, β) = κ(tα, tβ) for α, β ∈ H∗.
We have seen that α ∈ Φ if and only if −α ∈ Φ; an easy argument using associativity and
nondegeneracy of κ shows that [Lα, L−α] is one-dimensional with basis tα for all α ∈ Φ;
we cannot have [LαL−α] = 0 since then ad x, ad y would be commuting nilpotent linear
maps for x ∈ Lα, y ∈ L−α, forcing κ(Lα, L−α) = 0 and contradicting nondegeneracy.
Moreover we cannot have α(tα) = 0, for otherwise we could find x ∈ Lα, y ∈ L−α with
[xy] = tα, [tαx] = [tαy] = 0, forcing x, y, tα to span a solvable subalgebra S of L with
tα ∈ [SS], tα nilpotent, contradicting tα ∈ H, tα 6= 0. It follows for every nonzero xα ∈ Lα
there is a nonzero yα ∈ L−α with xαyα] = hα = 2tα/(α, α)[hαxα] = 2xα, [hyα] = −2yα,
so that xα, yα, hα span a subalgebra Sα of L isomorphic to sl(2,K). Thus any semisimple
Lie algebra is built up out of copies of sl(2,K); the α ∈ Φ span all of H∗, since otherwise
some nonzero h ∈ H would centralize all of L.

Now we are in a position to apply our knowledge of the finite-dimensional represen-
tation theory of sl(2,K). First let α ∈ Φ and consider the sum Rα of H and the root
spaces Lcα where c runs through the nonzero elements of K with cα ∈ Φ. Then Rα is a
module for the copy Sα of sl(2,K) in L constructed in the previous paragraph. The toral
subalgebra H accounts for all occurrences of the weight 0 in Rα. The codimension-one
subspace Ker α of H is centralized by Sα; the only other occurrence of the weight 0 comes
from hα, which lies in Sα itself. Thus the weight 2 occurs only once in Rα (as that of xα)
and higher even weights do not occur. In particular, we must have L2α = 0: twice a root
is never a root. But then (1/2)α is not a root either; the weights of Rα consists of 0 with



multiplicity dimH and 2 with multiplicity one. It follows that all root spaces Lα have
dimension one and the only multiples of a root α that are roots are ±α.

Now extend the action of Sα to all of L. If β is a root, then β(hα) is a weight of
L relative to Sα, forcing β(hα) ∈ Z. But now the weights in any finite-dimensional Sα-
module occur in pairs ±m, with a weight vector for one of these weights obtained from a
weight vector for the other one by bracketing repeatedly with either xα or yα. We deduce
that if α, β ∈ Φ, then β − β(hα)α ∈ Φ, with.β(hα) ∈ Z.

Finally, let α1, . . . , αn be a basis of H∗ consisting of roots. Given β ∈ Φ, write
β =

∑n
i=1 ciαi; then I claim that all ci ∈ Q. To see this, pair both sides of β =

∑
ciαi

with any αj under the form (·, ·) and divide by (αj , αj). We get a linear system of equations
with rational coefficients in the ci with a unique solution in K; that unique solution must
then lie in the copy of Q inside K. Thus all roots lie in a rational subspace of H∗ of
dimension dimK H

∗. We will wrap up the remaining key properties of roots and look at
examples of root systems next time.


