
Lecture 1-28

As a consequence of Weyl’s Theorem, we now show that semisimple linear Lie algebras
L are closed under the Jordan decomposition; that is, for any matrix x in such a Lie algebra
L, the semisimple and nilpotent parts xs, xn of x as a matrix also lie in L. (We already
know that x has semisimple and nilpotent parts as an element of L, which lie in L, but
now we want to see that they coincide with xs and xn). To prove this we recall first that
ad xs and ad xn, being polynomials in ad x without constant term, take L to L, so at least
xs, xn lie in the normalizer N of L in gl(n,K), the ambient matrix algebra containing L. If
we knew that N = L we would be done, but unfortunately this is false; scalar matrices lie
in N but not in L. We therefore replace N by the subalgebra L′ consisting of all matrices
y acting with trace 0 on any L-submodule of V = Kn. Since L = [LL] consists of trace
0 matrices, we have L ⊂ L′; we now claim that L = L′. By Weyl’s Theorem we may
write L′ as the direct sum of L and a complementary submodule M ; since [LL′] ⊂ L, by
definition of N , we see that L acts trivially on M , whence any matrix y in M acts by a
scalar on any irreducible L-submodule of V , by Schur’s Lemma. Since y acts with trace
0 on any such submodule and V is the direct sum of such submodules, we conclude that
y = 0, as desired. In particular, the semisimple and nilpotent parts xs, xn of any element
x of a semisimple Lie algebra L continue to act semisimply and nilpotently, respectively,
in any finite-dimensional representation of L.

Continuing with representation theory, let L be the smallest semisimple Lie algebra
sl(2,K); recall that L has basis h, x, y, where [hx] = 2x, [hy] = −2y, [xy] = h. We will
now classify the irreducible finite-dimensional L-modules V . We know by above that h
acts diagonally on V , so V is the sum of its eigenspaces Vλ (which we call weight spaces)
under the action of h. These eigenspaces are well known to be linearly independent. Since
there are only finitely many of them, there is a weight space Vλ such that Vλ+2 = 0. Now
the Jacobi identity shows that x, y map Vµ to Vµ+2, Vµ−2, respectively (for this reason x
and y are sometimes said to act by raising and lowering operators). Choosing any nonzero
v0 ∈ Vλ and setting vi = (1/i!)yiv0 for i ≥ 0, we can check easily by induction that
hvi = (λ − 2i)vi, yvi = (i + 1)vi+1, xvi = (λ − i + 1)vi−1. But now the nonzero vi are
independent, so there must be a least m with vm+1 = 0. Since xvm+1 is a multiple of
vm, this multiple must be 0, forcing λ − m + 1 = 0: the weight λ, called for obvious
reasons the highest weight of V , is a nonnegative integer m, one less than the dimension
of V (since V is clearly spanned by the nonzero vi). The full set of weights of V is then
m,m−2,m−4, . . . ,−m, so clearly V has the weight 0 or 1, with multiplicity one, but not
both. The “natural representation” V = K2 has weights 1,−1; the adjoint representation
L has weights 2, 0,−2. A general finite-dimensional representation of L is a direct sum of
irreducible ones; you will show in HW that an irreducible representation exists of every
possible dimension m. So the representation theory of L is only slightly more complicated
than that of a finite group over C; there are infinitely many irreducible representations up
to isomorphism, but they are very well controlled.

Staying with L = sl(2,K) just a little longer, we now look at its adjoint group. In
terms of matrix units, we have h = e11 − e22, x = e12, y = e21. Computing the product
of the exponentials of ax, by, and ax, in that order, for any a, b ∈ K with ab = −1, we
get a matrix yc with first row (0, c) and second row (−c−1, 0) for some c ∈ K; multiplying



this by the corresponding matrix with c replaced by −c−1, we get a diagonal matrix with
diagonal entries c2, c−2. Since K is algebraically closed, we deduce from the theory of row
operations that any matrix of determinant 1 is the product of exponentials of nilpotent
elements in L, so that indeed Int L = PSL(2,K), as mentioned previously. The group
SL(2,K) acts in a natural way on any finite-dimensional L-module M ; this action descends
to an action of the adjoint group PSL(2,K) if and only if the action of the scalar matrix
−I is trivial. If M is irreducible, this happens if and only if M has odd dimension. In
general the action of the matrix yc defined above with c = 1 interchanges positive and
negative weight spaces in M , just as it interchanges the elements x and y in L.

Now let L be an arbitrary semisimple Lie algebra (over our usual algebraically closed
field of characteristic 0). If L consisted of (ad-)nilpotent elements, it would be nilpotent,
by Engel’s Theorem; since this is not the case, but L is closed under Jordan decomposition,
there must be a nonzero subalgebra of L consisting of (ad-)semisimple elements. Call such
a subalgebra toral. Now a toral subalgebra must be abelian, for otherwise it would contain
elements x, y such that [xy] = ky for some k ∈ K, k 6= 0; but then the bracket of y and
x would be a sum of eigenvectors for ad y corresponding to nonzero eigenvalues, if any, a
contradiction. Now fix a maximal toral subalgebra H (not contained in any other). Then
H acts on L by a commuting family of semisimple maps; by a standard result of linear
algebra, there must a fixed basis of L with respect to which all h ∈ H act diagonally via
the bracket. Equivalently, there is a finite set S of linear functions on H such that L is
the direct sum of its simultaneous eigenspaces Lα as α runs over S. This is called the root
space decomposition of L and will serve as our key tool in classifying all such Lie algebras
L up to isomorphism.


