Lecture 1-28

As a consequence of Weyl's Theorem, we now show that semisimple linear Lie algebras L are closed under the Jordan decomposition; that is, for any matrix x in such a Lie algebra L, the semisimple and nilpotent parts x_{s}, x_{n} of x as a matrix also lie in L. (We already know that x has semisimple and nilpotent parts as an element of L, which lie in L, but now we want to see that they coincide with x_{s} and x_{n}). To prove this we recall first that ad x_{s} and ad x_{n}, being polynomials in ad x without constant term, take L to L, so at least x_{s}, x_{n} lie in the normalizer N of L in $\mathfrak{g l}(n, K)$, the ambient matrix algebra containing L. If we knew that $N=L$ we would be done, but unfortunately this is false; scalar matrices lie in N but not in L. We therefore replace N by the subalgebra L^{\prime} consisting of all matrices y acting with trace 0 on any L-submodule of $V=K^{n}$. Since $L=[L L]$ consists of trace 0 matrices, we have $L \subset L^{\prime}$; we now claim that $L=L^{\prime}$. By Weyl's Theorem we may write L^{\prime} as the direct sum of L and a complementary submodule M; since $\left[L L^{\prime}\right] \subset L$, by definition of N, we see that L acts trivially on M, whence any matrix y in M acts by a scalar on any irreducible L-submodule of V, by Schur's Lemma. Since y acts with trace 0 on any such submodule and V is the direct sum of such submodules, we conclude that $y=0$, as desired. In particular, the semisimple and nilpotent parts x_{s}, x_{n} of any element x of a semisimple Lie algebra L continue to act semisimply and nilpotently, respectively, in any finite-dimensional representation of L.

Continuing with representation theory, let L be the smallest semisimple Lie algebra $\mathfrak{s l}(2, K)$; recall that L has basis h, x, y, where $[h x]=2 x,[h y]=-2 y,[x y]=h$. We will now classify the irreducible finite-dimensional L-modules V. We know by above that h acts diagonally on V, so V is the sum of its eigenspaces V_{λ} (which we call weight spaces) under the action of h. These eigenspaces are well known to be linearly independent. Since there are only finitely many of them, there is a weight space V_{λ} such that $V_{\lambda+2}=0$. Now the Jacobi identity shows that x, y map V_{μ} to $V_{\mu+2}, V_{\mu-2}$, respectively (for this reason x and y are sometimes said to act by raising and lowering operators). Choosing any nonzero $v_{0} \in V_{\lambda}$ and setting $v_{i}=(1 / i!) y^{i} v_{0}$ for $i \geq 0$, we can check easily by induction that $h v_{i}=(\lambda-2 i) v_{i}, y v_{i}=(i+1) v_{i+1}, x v_{i}=(\lambda-i+1) v_{i-1}$. But now the nonzero v_{i} are independent, so there must be a least m with $v_{m+1}=0$. Since $x v_{m+1}$ is a multiple of v_{m}, this multiple must be 0 , forcing $\lambda-m+1=0$: the weight λ, called for obvious reasons the highest weight of V, is a nonnegative integer m, one less than the dimension of V (since V is clearly spanned by the nonzero v_{i}). The full set of weights of V is then $m, m-2, m-4, \ldots,-m$, so clearly V has the weight 0 or 1 , with multiplicity one, but not both. The "natural representation" $V=K^{2}$ has weights $1,-1$; the adjoint representation L has weights $2,0,-2$. A general finite-dimensional representation of L is a direct sum of irreducible ones; you will show in HW that an irreducible representation exists of every possible dimension m. So the representation theory of L is only slightly more complicated than that of a finite group over \mathbb{C}; there are infinitely many irreducible representations up to isomorphism, but they are very well controlled.

Staying with $L=\mathfrak{s l}(2, K)$ just a little longer, we now look at its adjoint group. In terms of matrix units, we have $h=e_{11}-e_{22}, x=e_{12}, y=e_{21}$. Computing the product of the exponentials of $a x, b y$, and $a x$, in that order, for any $a, b \in K$ with $a b=-1$, we get a matrix y_{c} with first row $(0, c)$ and second row $\left(-c^{-1}, 0\right)$ for some $c \in K$; multiplying
this by the corresponding matrix with c replaced by $-c^{-1}$, we get a diagonal matrix with diagonal entries c^{2}, c^{-2}. Since K is algebraically closed, we deduce from the theory of row operations that any matrix of determinant 1 is the product of exponentials of nilpotent elements in L, so that indeed Int $L=\operatorname{PSL}(2, K)$, as mentioned previously. The group $S L(2, K)$ acts in a natural way on any finite-dimensional L-module M; this action descends to an action of the adjoint group $P S L(2, K)$ if and only if the action of the scalar matrix $-I$ is trivial. If M is irreducible, this happens if and only if M has odd dimension. In general the action of the matrix y_{c} defined above with $c=1$ interchanges positive and negative weight spaces in M, just as it interchanges the elements x and y in L.

Now let L be an arbitrary semisimple Lie algebra (over our usual algebraically closed field of characteristic 0). If L consisted of (ad-)nilpotent elements, it would be nilpotent, by Engel's Theorem; since this is not the case, but L is closed under Jordan decomposition, there must be a nonzero subalgebra of L consisting of (ad-)semisimple elements. Call such a subalgebra toral. Now a toral subalgebra must be abelian, for otherwise it would contain elements x, y such that $[x y]=k y$ for some $k \in K, k \neq 0$; but then the bracket of y and x would be a sum of eigenvectors for ad y corresponding to nonzero eigenvalues, if any, a contradiction. Now fix a maximal toral subalgebra H (not contained in any other). Then H acts on L by a commuting family of semisimple maps; by a standard result of linear algebra, there must a fixed basis of L with respect to which all $h \in H$ act diagonally via the bracket. Equivalently, there is a finite set S of linear functions on H such that L is the direct sum of its simultaneous eigenspaces L_{α} as α runs over S. This is called the root space decomposition of L and will serve as our key tool in classifying all such Lie algebras L up to isomorphism.

