
Lecture 1-25

So far we have stuck to the structure theory of Lie algebras, giving no more than the
first definitions of representation (or module) theory. Now however we must digress to
prove a basic result in the latter theory, which we will need to prove the deeper results in
structure theory. This is Weyl’s Theorem, which asserts that any finite-dimensional module
M over a semisimple Lie algebra L is completely reducible, that is, it is a direct sum of
irreducible modules; recall that the same result holds for finite-dimensional representations
of a finite group over a field of characteristic 0.

The proof will require some preparation; we begin by describing a couple of ways to
make new modules over a Lie algebra L from old ones. If V,W are two L-modules, then
we can take the tensor product V ⊗K W of V and W as K-vector spaces; recall that the
dimension of the tensor product is the product of the dimensions of V and W . If V and W
were modules over a group G, then we could define a natural G-action on V ⊗W via the
recipe g(v⊗w) = gv⊗gw for g ∈ G, v ∈ V,w ∈W . For Lie algebras we must “differentiate”
this recipe: we decree that x(v ⊗ w) = xv ⊗ w + v ⊗ xw for x ∈ L, v ∈ V,w ∈ W .
A simple calculation then shows that the difference of the actions by xy and yx equals
the action of the bracket [xy], as required. In a similar way, the set homK(V,W ) of K-
linear maps from V to W has a module structure, defined by (xf)(v) = xf(v)− f(xv) for
x ∈ L, v ∈ V, f ∈ hom(V,W ). In particular, L acts trivially (i.e. by 0) on f ∈ hom(V,W )
if and only if f is an L-module homomorphism (commutes with the action of L). We also
need Schur’s Lemma, which says that the only module homomorphisms from an irreducible
finite-dimensional L-module M to itself are the scalars; this follows since any eigenspace
of such a homomorphism must be submodule, hence either all of M or 0, so that for a
suitable eigenvalue it must be all of M .

Finally we need Casimir elements. These are most naturally attached to representa-
tions rather than to modules, that is, to Lie algebra homomorphisms φ : L → gl(m,K)
for some m; let V = Km be the corresponding L-module. Assume that L is semisim-
ple. The form (·, ·) on L defined via (x, y) = tr(φ(x)φ(y)) is associative, for the same
reason that the Killing form is associative, and its radical is a solvable ideal of L by Car-
tan’s Criterion, so this radical is 0 and the form is nondegenerate. Fix a basis x1, . . . , xn
of L and let y1, . . . , yn be the dual basis relative to the form, so that (xi, yj) = δij ,
the Kronecker delta. The Casimir element cφ corresponding to φ is then the matrix∑n
i=1 φ(xi)φ(yi). For x ∈ L write [xxi =

∑
j aijxj , [xyi] =

∑
j bijyj . Associativity of

the form implies that ([xix], yj) = (xi, [xyj ] for all i, j, whence the coefficients satisfy
aij = −bji for all i, j. For any x ∈ L the commutator [φ(x)cφ] of φ(x) and cφ, which equals∑n
i=1([φ(x)φ(xi)]φ(yi) + φ(xi)[φ(x)φ(yi)]). The coefficient of φ(xi)φ(yj) in this sum is

aij+bji = 0 for all i, j, so cφ commutes with all φ(x). Hence cφ must be a scalar matrix if V
is irreducible. Since its trace is easily seen to be dimL (by the way the dual bases x1, . . . , xn
and y1, . . . , yn were chosen), it must in fact be the scalar n/m = (dimL)/(dimV ); in par-
ticular, it does not depend on the choice of basis x1, . . . , xn of L. (Actually, it is not
difficult to see in general that cφ is independent of the choice of basis.)

Now we are ready to tackle the proof of Weyl’s Theorem. I warn you that the argument
in the text is garbled at a couple of crucial places. Given a submodule N of an L-module
M we must show that N has a complement, that is, there is another submodule N ′ such



that M is the direct sum of N and N ′. (This is what Humphreys should have said
at the very beginning of his proof.) We first prove this if N has codimension one, by
induction on dimM . If N is reducible, say with proper submodule P , then the quotient
module N/P is naturally a submodule of M/P of codimension one, whence by hypothesis
it has a complementary submodule Q̄. Pulling back to M we get a submodule Q of M
containing P as a submodule of codimension one. By inductive hypothesis again, P has
a one-dimensional complement in Q, which is also a complement to N in M , as desired.
Thus we are reduced to the case where N is irreducible. The Casimir element c of the
representation corresponding to M then acts by the nonzero scalar dimL/dimN , by a
calculation in the last paragraph, but both L and c must act by 0 on the quotient module
M/N , since this quotient has dimension one and L = [LL]. Hence the the kernel N ′ of c
on M furnishes the one-dimensional complement N ′ to N we are looking for.

Thus submodules of finite-dimensional modules over a semisimple Lie algebra of codi-
mension one always have complements. Now suppose that N is any proper submodule of
M . Then L acts on the vector space hom(M,N), preserving the subspace H consisting
of all linear maps whose restriction to N is a scalar. This submodule H then admits the
submodule H ′ consisting of all linear maps whose restriction to N is 0. If x spans a one-
dimensional complement to H ′ in H, then L acts on H ′ trivially as above, since L = [LL],
so that x is an L-module homomorphism from M to N restricting to a nonzero scalar on
N . Its kernel N ′ is the complement to N we are looking for.

Weyl’s Theorem was originally proved analytically, using integration on compact Lie
groups; Brauer later gave the proof that we have followed. The same result (that finite-
dimensional modules are completely reducible) of course also holds for finite groups over
fields of characteristic 0 and semisimple Artinian rings; for simple Artinian rings R we
have the further bonus that there is only one irreducible R-module up to isomorphism: R
is isomorphic to the ring Mn(D) of n × n matrices over a division ring D, and then its
unique irreducible (left) module is Dn, the space of column vectors with coordinates in D.


