Lecture 1-18

We have previously mentioned the Jordan canonical form of a matrix over an algebraically closed field K (of any characteristic), in the context of nilpotent Lie subalgebras of $\mathfrak{g l}(n, K)$. It turns out that this form and an additive decomposition corresponding to it play crucial roles in the theory of Lie algebras, so we digress a bit to discuss this form in more detail.

The Jordan canonical form y of an $n \times n$ matrix x over K is a block diagonal matrix for which the blocks are upper triangular with equal entries on the main diagonal, ones on the diagonal above it, and zeroes elsewhere. Given a matrix y in such a form, let y_{s} be the matrix whose main diagonal is the same as that of y while its other entries are 0 and let $y_{n}=y-y_{s}$. Then y_{s} is semisimple(=diagonalizable), y_{n} is nilpotent (being strictly upper triangular), and one easily checks that y_{y}, y_{n} both commute with y. More generally, let x as above be any $n \times n$ matrix over K and let T be the corresponding linear transformation of K^{n}, sending v to $x v$. Let $p(\lambda)=\prod\left(\lambda-a_{i}\right)^{n_{i}}$ be the characteristic polynomial of x and T. Then it is well known that K^{n} is the direct sum of the generalized eigenspaces $V_{i}=\operatorname{Ker}\left(T-a_{i}\right)^{n_{i}}$. By the Chinese Remainder Theorem there is a polynomial $q(\lambda)$ such that $q(\lambda) \equiv a_{i} \bmod \left(\lambda-a_{i}\right)^{n_{i}}$ for every i while $q(T) \equiv 0 \bmod \lambda$; note that the last congruence is superfluous if one of the a_{i} is 0 , while otherwise the moduli are indeed relatively prime. Then $q(T)$ acts by a_{i} on each subspace V_{i} while the difference $p(T)=T-q(T)$ acts nilpotently on each V_{i}, hence on all of K^{n}. This says that the matrices x_{s}, x_{n} of $q(T), p(T)$ are semisimple and nilpotent, respectively, each commutes with x, and x is their sum; moreover $q(T), p(T)$ are polynomials in T constant term 0 . Conversely, if $x=x_{s}^{\prime}+x_{n}^{\prime}$ is another decomposition of x into semisimple and nilpotent matrices commuting with x, then x_{s}^{\prime} and x_{n}^{\prime} also commute with x_{s} and x_{n} (the latter being polynomials in x), whence $x_{s}-x_{s}^{\prime}$ is again semisimple and $x_{n}-x_{n}^{\prime}$ is again nilpotent. The equality $x_{s}-x_{s}^{\prime}=x_{n}^{\prime}-x_{n}$ then forces $x_{x}=x_{s}^{\prime}, x_{n}=x_{n}^{\prime}$. Thus any $n \times n$ matrix x over K is uniquely the sum $x_{s}+x_{n}$ of semisimple and nilpotent matrices commuting with itself. This is the Jordan decomposition mentioned above, which goes hand in hand with the Jordan form. We call x_{s} and x_{n} the semisimple and nilpotent parts of x, respectively.

What makes the Jordan decomposition useful is that it is preserved when one linear Lie algebra is sent to another by a homomorphism. First of all, if $x \in L=\mathfrak{g l}(n, K)$, then ad x_{s} and ad x_{n} are respectively the semisimple and nilpotent parts of ad x in the space of linear transformations from $\mathfrak{g l}(n, K)$ to itself; this follows since we have already seen that ad x_{s} is semisimple, while ad x_{n} is nilpotent since it is the difference between left and right multiplication by x_{n} and both such multiplications are nilpotent. Since the commutator of ad x_{s} and ad x_{n} is ad $\left[x_{s}, x_{n}\right]$, this commutator is 0 , and ad $x_{s}+\operatorname{ad} x_{n}$ is indeed the Jordan decomposition of ad x. Secondly, given a finite-dimensional not necessarily associative algebra A over K, the semisimple and nilpotent parts d_{s}, d_{n} of any derivation of A, considered as a linear transformation from A to itself, are again derivations; this follows since the generalized eigenspaces A_{a}, A_{b} of A corresponding to the eigenvalues a, b of d are such that $A_{a} A_{b} \subset A_{a+b}$, as shown in the text on p. 19, whence the transformation d_{s} acting by the scalar a on each A_{a} is a derivation, as desired.

Now we are ready to give a criterion for a transformation x to be nilpotent, stated purely in terms of traces. Assume now that K has characteristic 0 (in addition to be being
as usual algebraically closed). Let $A \subset B$ be two subspaces of $\mathfrak{g l}(n, K)$ and set $M=\{x \in$ $\mathfrak{g l}(n, K):[x, B] \subset A\}$. Suppose that $x \in M$ is such that the trace $\operatorname{tr} x y=0$ for all $y \in M$. Then x is nilpotent. To prove this, let $s+n=x_{s}+x_{n}$ be the Jordan decomposition of x. Let a_{1}, \ldots, a_{m} be the eigenvalues of x and s, counted with multiplicities. We must show that all a_{i} are 0 , or equivalently that the \mathbb{Q}-subspace E of K spanned by the a_{i} is 0 . For this it is enough if we can show that any \mathbb{Q}-linear map f from this subspace to \mathbb{Q} is 0 . Given f, let $r(\lambda)$ be a polynomial in $K[\lambda]$ with constant term 0 such that $r\left(a_{i}-a_{j}\right)=f\left(a_{i}\right)-f\left(a_{j}\right)$ for all i, j; there is no ambiguity in the assigned values since if $a_{i}-a_{j}=a_{k}-a_{\ell}$, then by linearity $f\left(a_{i}\right)-f\left(a_{j}\right)=f\left(a_{k}\right)-f\left(a_{\ell}\right)$. Now we know that ad s acts diagonally on $\mathfrak{g l}(n, K)$ with eigenvalues $a_{i}-a_{j}$, so the diagonal matrix y with eigenvalues $f\left(a_{1}\right), \ldots, f\left(a_{m}\right)$ (and the same eigenvectors as s) is such that ad $y=r(\operatorname{ad} s)$. But now ad s is the semisimple part of ad x and can be written as polynomial in ad x with constant term 0 , so ad y can also be written as such a polynomial, whence ad y maps B into A and $y \in M$ and $\operatorname{tr} x y=0$. But this last trace is $\sum_{i} a_{i} f\left(a_{i}\right)$; applying f, we get $\sum f\left(a_{i}\right)^{2}=0$, whence all $f\left(a_{i}\right)=0$, as desired.

We want to apply this criterion to give a criterion in terms of traces for a Lie algebra to be solvable. To do this note first that for any $x, y, z \in \mathfrak{g l}(n, K)$ we have $\operatorname{tr}([x y] z=\operatorname{tr}(x[y z]$, since $[x y] z=x y z-y x z, x[y z]=x y z-x z y$ and $\operatorname{tr} x z y=\operatorname{tr} z y x$. Define the Killing form κ on a Lie algebra L via $\kappa(x, y)=\operatorname{tr}(\operatorname{ad} x, \operatorname{ad} y)$. Then κ is said to be associative or invariant, in the sense that $\kappa([x y], z)=\kappa(x,[y z])$. We will explore the powerful consequences of this definition next time.

