
Lecture 1-18

We have previously mentioned the Jordan canonical form of a matrix over an alge-
braically closed field K (of any characteristic), in the context of nilpotent Lie subalgebras
of gl(n,K). It turns out that this form and an additive decomposition corresponding to it
play crucial roles in the theory of Lie algebras, so we digress a bit to discuss this form in
more detail.

The Jordan canonical form y of an n× n matrix x over K is a block diagonal matrix
for which the blocks are upper triangular with equal entries on the main diagonal, ones
on the diagonal above it, and zeroes elsewhere. Given a matrix y in such a form, let ys
be the matrix whose main diagonal is the same as that of y while its other entries are
0 and let yn = y − ys. Then ys is semisimple(=diagonalizable), yn is nilpotent (being
strictly upper triangular), and one easily checks that yy, yn both commute with y. More
generally, let x as above be any n × n matrix over K and let T be the corresponding
linear transformation of Kn, sending v to xv. Let p(λ) =

∏
(λ−ai)ni be the characteristic

polynomial of x and T . Then it is well known that Kn is the direct sum of the generalized
eigenspaces Vi = Ker (T−ai)ni . By the Chinese Remainder Theorem there is a polynomial
q(λ) such that q(λ) ≡ ai mod (λ − ai)ni for every i while q(T ) ≡ 0 mod λ; note that
the last congruence is superfluous if one of the ai is 0, while otherwise the moduli are
indeed relatively prime. Then q(T ) acts by ai on each subspace Vi while the difference
p(T ) = T − q(T ) acts nilpotently on each Vi, hence on all of Kn. This says that the
matrices xs, xn of q(T ), p(T ) are semisimple and nilpotent, respectively, each commutes
with x, and x is their sum; moreover q(T ), p(T ) are polynomials in T constant term 0.
Conversely, if x = x′s + x′n is another decomposition of x into semisimple and nilpotent
matrices commuting with x, then x′s and x′n also commute with xs and xn (the latter being
polynomials in x), whence xs−x′s is again semisimple and xn−x′n is again nilpotent. The
equality xs−x′s = x′n−xn then forces xx = x′s, xn = x′n. Thus any n×n matrix x over K
is uniquely the sum xs + xn of semisimple and nilpotent matrices commuting with itself.
This is the Jordan decomposition mentioned above, which goes hand in hand with the
Jordan form. We call xs and xn the semisimple and nilpotent parts of x, respectively.

What makes the Jordan decomposition useful is that it is preserved when one linear
Lie algebra is sent to another by a homomorphism. First of all, if x ∈ L = gl(n,K), then
ad xs and ad xn are respectively the semisimple and nilpotent parts of ad x in the space of
linear transformations from gl(n,K) to itself; this follows since we have already seen that
ad xs is semisimple, while ad xn is nilpotent since it is the difference between left and right
multiplication by xn and both such multiplications are nilpotent. Since the commutator
of ad xs and ad xn is ad [xs, xn], this commutator is 0, and ad xs+ ad xn is indeed
the Jordan decomposition of ad x. Secondly, given a finite-dimensional not necessarily
associative algebra A over K, the semisimple and nilpotent parts ds, dn of any derivation
of A, considered as a linear transformation from A to itself, are again derivations; this
follows since the generalized eigenspaces Aa, Ab of A corresponding to the eigenvalues a, b
of d are such that AaAb ⊂ Aa+b, as shown in the text on p. 19, whence the transformation
ds acting by the scalar a on each Aa is a derivation, as desired.

Now we are ready to give a criterion for a transformation x to be nilpotent, stated
purely in terms of traces. Assume now that K has characteristic 0 (in addition to be being



as usual algebraically closed). Let A ⊂ B be two subspaces of gl(n,K) and set M = {x ∈
gl(n,K) : [x,B] ⊂ A}. Suppose that x ∈M is such that the trace tr xy = 0 for all y ∈M .
Then x is nilpotent. To prove this, let s + n = xs + xn be the Jordan decomposition of
x. Let a1, . . . , am be the eigenvalues of x and s, counted with multiplicities. We must
show that all ai are 0, or equivalently that the Q-subspace E of K spanned by the ai
is 0. For this it is enough if we can show that any Q-linear map f from this subspace
to Q is 0. Given f , let r(λ) be a polynomial in K[λ] with constant term 0 such that
r(ai − aj) = f(ai) − f(aj) for all i, j; there is no ambiguity in the assigned values since
if ai − aj = ak − a`, then by linearity f(ai) − f(aj) = f(ak) − f(a`). Now we know that
ad s acts diagonally on gl(n,K) with eigenvalues ai − aj , so the diagonal matrix y with
eigenvalues f(a1), . . . , f(am) (and the same eigenvectors as s) is such that ad y = r(ad s).
But now ad s is the semisimple part of ad x and can be written as polynomial in ad x
with constant term 0, so ad y can also be written as such a polynomial, whence ad y maps
B into A and y ∈ M and tr xy = 0. But this last trace is

∑
i aif(ai); applying f , we get∑

f(ai)
2 = 0, whence all f(ai) = 0, as desired.

We want to apply this criterion to give a criterion in terms of traces for a Lie algebra to
be solvable. To do this note first that for any x, y, z ∈ gl(n,K) we have tr ([xy]z = tr (x[yz],
since [xy]z = xyz− yxz, x[yz] = xyz− xzy and tr xzy = tr zyx. Define the Killing form κ
on a Lie algebra L via κ(x, y) = tr (ad x,ad y). Then κ is said to be associative or invariant,
in the sense that κ([xy], z) = κ(x, [yz]). We will explore the powerful consequences of this
definition next time.


