
Lecture 1-16

Following the lines of our earlier investigation of linear nilpotent Lie algebras, we
now look at solvable Lie subalgebras of gl(m,K). Here for the first time we must make
two previously mentioned assumptions on K, namely that it is algebraically closed and
of characteristic 0. The result, called Lie’s Theorem, states that given any solvable Lie
subalgebra L of gl(m,K) with K algebraically closed and of characteristic 0, there is a
common eigenvector v ∈ Km for the matrices in L. (Note that, in contrast to the lemma
used to prove Engel’s Theorem, we make no assumption in advance about the matrices in
L, but we do assume something about the structure of L itself.)

To prove this we follow the approach in proving the lemma just mentioned and argue
by induction on the dimension d of L. If d = 1, so that L is spanned by a single matrix x,
then any eigenvector of x has the desired property (but notice that we have already had
to use our assumption that K is algebraically closed to be sure that x has an eigenvector).
If the result holds for solvable Lie algebras of dimension less than d, then we note by the
definition of solvability that L must properly contain its solvable derived subalgebra [LL],
and any subspace I of L containing [LL] is automatically an ideal, so L has a solvable
ideal I of codimension one, so that the matrices in I have a common eigenvector. This
implies that for some linear function λ from I to K the common λ-eigenspace V = Vλ =
{v ∈ Kn : xv = λ(x)v, x ∈ I} is nonzero. Now if we can show that the matrices in L leave
V invariant, then we will be done, for L is spanned by I and just one matrix y, so that any
eigenvector of y in V does the job. To show that L preserves V , we let x ∈ L, v ∈ V, y ∈ I
and look at xyv = yxv + [xy]v. We have xyv = λ(y)xv and [xy] ∈ I, so we must show
that λ[xy] = 0. Let n > 0 be the smallest integer such that v, xv, . . . , xnv are linearly
dependent and let Vi be the span of v . . . , xi−1v for i > 0, while V0 = 0, so that x maps
Vn to itself. Then we have yxiv = yxx−1v = xyx−1v − [yx]xi−1v, whence by induction
yxiv ≡ λ(y)xiv mod Vi for all i. Hence y acts linearly on Wn by an upper triangular
matrix with λ(y) on the diagonal and its trace on Wn is nλ(y). Then [xy] acts as the
commutator of two matrices on Wn, so its trace there must be 0. Since the characteristic
of K is 0, we get λ[xy] = 0, as desired.

Given this result, we can form the quotient space Km/Kv, on which L acts linearly, so
L has a common eigenvector in this quotient space. Iterating this construction, we see that
under the hypothesis the vector space Km admits a chain of subspaces K0 = 0 ⊂ K1 ⊂ . . .
preserved by L such that dimKi = i,Km = Km. Equivalently, there is a bsis of Km such
that the matrices in L are all upper triangular with respect to this basis. In particular,
applying this result to the adjoint action of L on itself, we see that any solvable Lie
algebra over an algebraically closed field K of characteristic 0 admits a chain of ideals
L) = 0 ⊂ L1 ⊂ . . . such that dimLi = i, Ln = L for some n. Also [LL] is nilpotent
whenever l is solvable, since [LL] modulo its center acts on itself by strictly upper triangular
and thus nilpotent matrices. It turns out that both of these properties can fail for a
solvable Lie algebra L over a field K which is not algebraically closed of characteristic 0.
Nevertheless, solvable Lie algebras L admitting a chain of ideals L0 ⊂ L1 ⊂ . . . of this
type are important enough to deserve a special name; they are called completely solvable.

If L is a nilpotent subalgebra of gl(m,K) and K as usual is algebraically closed of
characteristic 0, then we can say more: there is a basis of Km such that the matrices in L



are block diagonal with each block upper triangular with equal entries along its diagonal.
This is a Lie algebra analogue of the Jordan canonical form for a single matrix over K; it
turns out that this form will be a basic tool in our study of Lie algebras as well.

Recall from Friday’s lecture that a module M over a K−Lie algebra is a K-vector
space such that for all x ∈ L,m ∈M we have xm ∈M depending linearly on x and m such
that xym− yxm = [xy]m for all x, y ∈ L,m ∈M . Then n-dimensional modules M over a
Lie algebra L over K correspond to Lie algebra homomorphisms from L into gl(n,K); in
this case, as previously noted we call either M or the homomorphism a representation of L.
The notion of representation makes perfect sense if M is infinite-dimensional as well, and
in fact infinite-dimensional representations of a finite-dimensional Lie algebra are actively
studied in current research.

Just as in the ring case, we call a subspace N of an L-module M an L-submodule if
it is preserved by L; if so then L acts in a natural way on the quotient space M/N , which
accordingly is called a quotient L-module. We say that M is simple or irreducible if it has
no submodules apart from 0 and M itself. In this language Lie’s Theorem says that the
only irreducible finite-dimensional modules over a solvable Lie algebra L have dimension
one (assuming as usual that the basefield K is algebraically closed and of characteristic 0).


