
Lecture 1-14

We have seen that the Lie algebra u(n) of n×n strictly upper triangular matrices over
a field K, which consists of nilpotent matrices (their nth powers are 0), is nilpotent as a
Lie algebra. It is a remarkable fact that any Lie algebra L consisting of nilpotent n × n
matrices is conjugate to a subalgebra of u(n) and so in particular is nilpotent. To prove
this it is enough to show that for any such L there is a nonzero v ∈ Kn with xv = 0 for
all x ∈ L. For if so then L also acts by nilpotent matrices on the quotient vector space
Kn/Kv, whence there is a nonzero v̄2 ∈ Kn/Kv with xv̄2 = 0 for all x ∈ L; pulling v̄2
back to v2 ∈ Kn we get a vector v2 such that any x ∈ L sends v to 0 and v2 to a multiple
of v. Continuing in this way, we get a basis v, v2, . . . , vn of Kn such that the matrices in
L with respect to this basis are strictly upper triangular, as desired.

We show that v exists by induction on the dimension d of L. If d = 1, so that
L is spanned by a single matrix x, then there is k with xk = 0 6= xk−1, whence any
nonzero vector in xk−1Kn does the trick. In general let L′ be any proper subalgebra of L
of maximal dimension; such a subalgebra must exist since any one-dimensional subspace
of L is a subalgebra. Now for any x ∈ L, the transformation ad x from L to itself
is nilpotent, for it is the difference of left and right multiplication by x and these two
nilpotent transformations commute. Hence L acts on the quotient space L/L′ by nilpotent
matrices, so that by inductive hypothesis there is x ∈ L, x /∈ L′ with [Lx] ⊂ L′ and L′+Kx
is a subalgebra of L. By maximality we must have L′ + Kx = L and L′ is an ideal of
L. By the inductive hypothesis the subspace V of Kn consisting of all w with yw = 0
for all y ∈ L′ is nonzero; but now a simple calculation using the Jacobi identity shows
that x sends W to itself, so acts nilpotently on W . By the argument in the base case,
there is v ∈ W with xv = 0, whence we have zv = 0 for all z ∈ L = L′ + Kx as desired.
In particular, if L is a nilpotent Lie algebra, then it acts on itself by nilpotent matrices,
via the adjoint representation, so we deduce from the above result that there is a chain
L0 = 0 ⊂ L1 ⊂ · · · ⊂ Ln = L of ideals of L such that that dimLi = i and [LLi] ⊂ Li−1 for
all i; equivalently, L acts trivially on the one-dimensional quotient Li/Li−1.

A famous example of a nilpotent Lie algebra is the Heisenberg algebra of strictly upper
triangular 3× 3 matrices over a field K. This algebra is three-dimensional, being spanned
by the matrix units x = e12, y = e23, and z = e13; we have [xy] = z, [xz] = [yz] = 0. Last
time we observed that the the algebra L = sl(2) is simple over any field K of characteristic
not equal to 2; by contrast, if the characteristic of K is 2, then L is nilpotent and in fact
isomorphic to the Heisenberg algebra: setting x = e12, y = e21, z = e11 − e22 = I, we
find that x, y, z satisfy the bracket relations given above. This is our first indication that
the characteristic of the basefield K can be important; for virtually all of the theory that
follows, we will need to assume that K is in fact algebraically closed and of characteristic
0.

Now let L be any Lie subalgebra of gl(n) and suppose that ad x, as a linear transfor-
mation from L to itself, is nilpotent for all x ∈ L. Then Engel’s Theorem asserts that L
is nilpotent. To see this we note that the adjoint representation realizes the quotient L/Z
of L by its center Z as a Lie algebra of nilpotent matrices, whence L/Z is nilpotent; but
then so is L, by a remark made last time.

Thus nilpotence is a “local” property of Lie algebras in the sense that if it holds for



every element of a Lie algebra then it holds for the Lie algebra itself. A famous problem
in group theory called Burnside’s problem asks whether the same is true of the property
of having finite order. More precisely, let G be a group generated by two elements such
that there is a positive integer n with gn = 1 for all g ∈ G. Must G be finite? The answer
is yes for n = 2, 3, 4, or 6, but no in general (to show how hard this problem is, it is still
not known what the answer is for n = 5). Less ambitiously, one might ask whether among
finite groups generated by two elements with every element having order dividing n there
is a largest group. Here the answer turns out to be yes; this was proved by Efim Zelmanov,
who later received the Fields Medal for his work. (It was announced while Zelmanov and
I were both at Yale, in 1990, just before I came here). The connection with Lie algebras
is that if a finitely generated Lie algebra L has (ad x)n = 0 for fixed n and all x ∈ L, then
L is nilpotent; Zelmanov proved this result at the same time as the group-theoretic one.


