
Lecture 1-11

We begin with a few more remarks about the group Int L defined last time. Assume
for a moment that the basefield K is R or C and let M be an n× n matrix over K. Then
it is well known that the series eM =

∑∞
i=0 M

i/i! always converges (that is, the separate
series for each entry in the matrix power series all converge) and that eMe−M = I. Now
consider A =ad M , the linear function from the space of n × n matrices over K to itself
send a matrix N to MN −NM . Then A is the difference between two commuting linear
maps, namely left and right multiplication by M . Forming the series

∑∞
i=0 A

i/i!, we find
by a formal calculation that it sends any matrix N to eMNe−M . Thus the adjoint group
Int L of any classical Lie algebra L acts on L by conjugation of matrices; the matrices
involved have determinant one in all cases and in addition preserve the bilinear form (·, ·)
in types B,C, and D. Since conjugation by any scalar matrix is trivial, this is why we
must mod out by the scalar matrices in the formulas for Int L in the classical cases.

We now develop the theory of general Lie algebras. An easy example of an ideal in
any Lie algebra L over a field K is the derived algebra [LL], which is by definition spanned
by all [x, y] as x, y range over L (it is not true in general that the set of all brackets [xy] is
closed under addition, just as the set of commutators ghg−1h−1 as g, h range over a group
G need not be a subgroup of G; in both cases we close under the relevant operation to get
the subalgebra or subgroup). More generally, if I, J are ideals of L, then the Jacobi identity
shows that [IJ ], spanned by all brackets [xy] as x runs over I and y over J , is an ideal.
Another ideal of L is its center Z(L), consisting of all x ∈ L such that [xy] = 0 for all y ∈ L.
We say that L is simple if its dimension is larger than 1 and L has no ideals apart form itself
and 0 (any 1-dimensional Lie algebra is necessarily abelian and satisfies this condition, but
we do not want to call it simple). We say (for now) that L is semisimple if it is a finite
direct sum ⊕iLi of simple ideals Li, so that L is the direct sum of the Li as a vector space,
each Li is simple as a Lie algebra, and [LiLj ] = 0 if i 6= j; this is not the official definition
but will later be shown to be equivalent to it. In particular, if L is simple or semisimple,
we must have L = [LL], Z(L) = 0. Whenever Z(L) = 0, L is isomorphic to a linear Lie
algebra, that is, to a Lie algebra of matrices. To see this, note that the map from L to
gl(L) ∼= Mn(K) (i.e. to the set of linear maps from the K-vector space L to itself) sending
x to ad x is a Lie algebra homomorphism, by the Jacobi identity; its kernel is clearly Z(L),
so L is isomorphic to a subalgebra of Mn(K) if Z(L) = 0. More generally, any Lie algebra
homomorphism from L to some Mm(K) is called a representation of L; this definition
parallels that of a representation of a group. The corresponding notion of L-module is a
finite-dimensional K-vector space M such that for every x ∈ L,m ∈M there is x.m ∈M
such that (x + y).m = x.m + y.m, x.(m1 + m2) = x.m1 + x.m2, kx.m = x.km = k(x.m if
k ∈ K, and finally x.y.m− y.x.m = [xy].m for x, y ∈ L,m ∈M .

As a challenging exercise, try to prove directly that L = sl(n) is a simple Lie algebra for
n > 1, over any field K of characteristic 0. The case n = 2, where L has basis h, x, y, where
h = e11−e22, x = e12, y = e21, is worked out in the text in §2.1; here [hx] = 2x, [hy] = −2y,
and [xy] = h. In general one shows that every nonzero ideal of L = sl(n) contains first
one matrix unit eij for i 6= j, then all such units, and finally all of L. The algebra gl(n)
of all n × n matrices over K is almost simple, but not quite; it has the ideals L and the
subspace KI = Z(gl(n)) of all scalar matrices.



While L has no proper ideals, certain subalgebras of it have many such ideals. Specif-
ically, the subalgebra t(n) of upper triangular matrices has the ideal u(n) = [t(n), t(n)] of
strictly upper triangular matrices (with zeroes on the diagonal) as an ideal; in fact, note
that t(n) is also an associative K-algebra under multiplication and u(n) is a two-sided asso-
ciative ideal of it. The quotient t(n)/u(n), either of Lie algebras or of associative algebras,
is naturally isomorphic to the (Lie or associative) algebra D = d(n) of diagonal matrices,
and D is abelian whether it is regarded as a Lie or associative algebra. Passing to the
derived subalgebra [u(n), u(n)] of u(n), we find that it consists of all strictly upper trian-
gular matrices whose superdiagonals (immediately above the main diagonal) are also 0; the
quotient of u(n) by its derived algebra is again abelian. Iterating the derived subalgebra
construction, we find that we eventually get the 0 algebra. More generally, given an arbi-
trary Lie algebra L, we define its derived series L(0), L(1), . . . via L(0) = L,L(n) = [LL(n−1);
if we then have L(n) = 0 for some n, then we call L solvable. This notion is motivated by
and is strongly analogous to a parallel notion for groups which was defined much earlier,
in fact by Galois. There are also parallel notions of something called nilpotence for both
Lie algebras and groups, but in that case the notion for Lie algebras was defined first. We
define the lower central series of an arbitrary Lie algebra L by L0 = L,Ln = [LLn−1]; we
say that L is nilpotent if Ln = 0 for some n. Equivalently, L is nilpotent if and only if for
some n all n-fold brackets [. . . [x1x2]x3] . . . xn] are 0 in L Clearly any nilpotent Lie algebra
is solvable, but the converse fails, since t(n) is solvable but not nilpotent. (The notions of
solvability and nilpotence for groups G are defined in the same way, defining [GG] as the
commutator subgroup of G.)

It is easy to check that ideals and homomorphic images of solvable Lie algebras are
again solvable; moreover, if I is a solvable ideal such that the quotient L/I is solvable,
then so is L. Since we have the canonical homomorphism (I + J)/I ∼= I/(I ∩ J), it follows
that the sum of all solvable ideals of L is in fact the unique largest solvable ideal of L,
which we call its radical and denote by Rad L. Now we can give the official definition of
semisimplicity: L is semisimple if and only if Rad L = 0. Then for any Lie algebra L, we
have that L/Rad L is semisimple (lest L have a solvable ideal larger than Rad L). Note
that it is not true that if I is a nilpotent ideal of a Lie algebra L such that L/I is also
nilpotent, then L is nilpotent (as the example L = t(n) makes clear), but it is true that if
the quotient L/Z is nilpotent, then so is L, where Z is the center of L, for then we have
Ln ⊂ Z for some n, whence Ln+1 = 0.

We conclude by mentioning that the sum of two nilpotent ideals I, J of any Lie algebra
L is easily seen to be nilpotent, whence L has a unique largest nilpotent ideal N (in addition
to its unique largest solvable ideal Rad L).


