Lecture 1-11

We begin with a few more remarks about the group Int L defined last time. Assume for a moment that the basefield K is \mathbb{R} or \mathbb{C} and let M be an $n \times n$ matrix over K. Then it is well known that the series $e^M = \sum_{i=0}^{\infty} M^i / i!$ always converges (that is, the separate series for each entry in the matrix power series all converge) and that $e^M e^{-M} = I$. Now consider $A = \operatorname{ad} M$, the linear function from the space of $n \times n$ matrices over K to itself send a matrix N to MN - NM. Then A is the difference between two commuting linear maps, namely left and right multiplication by M. Forming the series $\sum_{i=0}^{\infty} A^i / i!$, we find by a formal calculation that it sends any matrix N to $e^M N e^{-M}$. Thus the adjoint group Int L of any classical Lie algebra L acts on L by conjugation of matrices; the matrices involved have determinant one in all cases and in addition preserve the bilinear form (\cdot, \cdot) in types B, C, and D. Since conjugation by any scalar matrix is trivial, this is why we must mod out by the scalar matrices in the formulas for Int L in the classical cases.

We now develop the theory of general Lie algebras. An easy example of an ideal in any Lie algebra L over a field K is the derived algebra [LL], which is by definition spanned by all [x, y] as x, y range over L (it is not true in general that the set of all brackets [xy] is closed under addition, just as the set of commutators $ghg^{-1}h^{-1}$ as g, h range over a group G need not be a subgroup of G; in both cases we close under the relevant operation to get the subalgebra or subgroup). More generally, if I, J are ideals of L, then the Jacobi identity shows that [IJ], spanned by all brackets [xy] as x runs over I and y over J, is an ideal. Another ideal of L is its center Z(L), consisting of all $x \in L$ such that [xy] = 0 for all $y \in L$. We say that L is simple if its dimension is larger than 1 and L has no ideals apart form itself and 0 (any 1-dimensional Lie algebra is necessarily abelian and satisfies this condition, but we do not want to call it simple). We say (for now) that L is semisimple if it is a finite direct sum $\oplus_i L_i$ of simple ideals L_i , so that L is the direct sum of the L_i as a vector space, each L_i is simple as a Lie algebra, and $[L_i L_j] = 0$ if $i \neq j$; this is not the official definition but will later be shown to be equivalent to it. In particular, if L is simple or semisimple, we must have L = [LL], Z(L) = 0. Whenever Z(L) = 0, L is isomorphic to a linear Lie algebra, that is, to a Lie algebra of matrices. To see this, note that the map from L to $\mathfrak{gl}(L) \cong M_n(K)$ (i.e. to the set of linear maps from the K-vector space L to itself) sending x to ad x is a Lie algebra homomorphism, by the Jacobi identity; its kernel is clearly Z(L), so L is isomorphic to a subalgebra of $M_n(K)$ if Z(L) = 0. More generally, any Lie algebra homomorphism from L to some $M_m(K)$ is called a representation of L; this definition parallels that of a representation of a group. The corresponding notion of *L*-module is a finite-dimensional K-vector space M such that for every $x \in L, m \in M$ there is $x \cdot m \in M$ such that $(x+y).m = x.m + y.m, x.(m_1 + m_2) = x.m_1 + x.m_2, kx.m = x.km = k(x.m)$ if $k \in K$, and finally x.y.m - y.x.m = [xy].m for $x, y \in L, m \in M$.

As a challenging exercise, try to prove directly that $L = \mathfrak{sl}(n)$ is a simple Lie algebra for n > 1, over any field K of characteristic 0. The case n = 2, where L has basis h, x, y, where $h = e_{11} - e_{22}, x = e_{12}, y = e_{21}$, is worked out in the text in §2.1; here [hx] = 2x, [hy] = -2y, and [xy] = h. In general one shows that every nonzero ideal of $L = \mathfrak{sl}(n)$ contains first one matrix unit e_{ij} for $i \neq j$, then all such units, and finally all of L. The algebra $\mathfrak{gl}(n)$ of all $n \times n$ matrices over K is almost simple, but not quite; it has the ideals L and the subspace $KI = Z(\mathfrak{gl}(n))$ of all scalar matrices.

While L has no proper ideals, certain subalgebras of it have many such ideals. Specifically, the subalgebra $\mathfrak{t}(n)$ of upper triangular matrices has the ideal $\mathfrak{u}(n) = [\mathfrak{t}(n), \mathfrak{t}(n)]$ of strictly upper triangular matrices (with zeroes on the diagonal) as an ideal; in fact, note that $\mathfrak{t}(n)$ is also an associative K-algebra under multiplication and $\mathfrak{u}(n)$ is a two-sided associative ideal of it. The quotient $\mathfrak{t}(n)/\mathfrak{u}(n)$, either of Lie algebras or of associative algebras, is naturally isomorphic to the (Lie or associative) algebra $D = \mathfrak{d}(n)$ of diagonal matrices, and D is abelian whether it is regarded as a Lie or associative algebra. Passing to the derived subalgebra $[\mathfrak{u}(n),\mathfrak{u}(n)]$ of $\mathfrak{u}(n)$, we find that it consists of all strictly upper triangular matrices whose superdiagonals (immediately above the main diagonal) are also 0; the quotient of $\mathfrak{u}(n)$ by its derived algebra is again abelian. Iterating the derived subalgebra construction, we find that we eventually get the 0 algebra. More generally, given an arbitrary Lie algebra L, we define its derived series $L^{(0)}, L^{(1)}, \dots$ via $L^{(0)} = L, L^{(n)} = [LL^{(n-1)};$ if we then have $L^{(n)} = 0$ for some n, then we call L solvable. This notion is motivated by and is strongly analogous to a parallel notion for groups which was defined much earlier, in fact by Galois. There are also parallel notions of something called *nilpotence* for both Lie algebras and groups, but in that case the notion for Lie algebras was defined first. We define the lower central series of an arbitrary Lie algebra L by $L^0 = L, L^n = [LL^{n-1}]$; we say that L is nilpotent if $L^n = 0$ for some n. Equivalently, L is nilpotent if and only if for some n all n-fold brackets $[\dots [x_1 x_2] x_3] \dots x_n]$ are 0 in L Clearly any nilpotent Lie algebra is solvable, but the converse fails, since $\mathfrak{t}(n)$ is solvable but not nilpotent. (The notions of solvability and nilpotence for groups G are defined in the same way, defining [GG] as the commutator subgroup of G.)

It is easy to check that ideals and homomorphic images of solvable Lie algebras are again solvable; moreover, if I is a solvable ideal such that the quotient L/I is solvable, then so is L. Since we have the canonical homomorphism $(I + J)/I \cong I/(I \cap J)$, it follows that the sum of all solvable ideals of L is in fact the unique largest solvable ideal of L, which we call its radical and denote by Rad L. Now we can give the official definition of semisimplicity: L is semisimple if and only if Rad L = 0. Then for any Lie algebra L, we have that L/Rad L is semisimple (lest L have a solvable ideal larger than Rad L). Note that it is not true that if I is a nilpotent ideal of a Lie algebra L such that L/I is also nilpotent, then L is nilpotent (as the example $L = \mathfrak{t}(n)$ makes clear), but it is true that if the quotient L/Z is nilpotent, then so is L, where Z is the center of L, for then we have $L^n \subset Z$ for some n, whence $L^{n+1} = 0$.

We conclude by mentioning that the sum of two nilpotent ideals I, J of any Lie algebra L is easily seen to be nilpotent, whence L has a unique largest nilpotent ideal N (in addition to its unique largest solvable ideal Rad L).