
Lecture 10-5

We begin with the last family of classical Lie algebras, namely the algebras L = so(2r) of
type Dr Here the matrices take the same form as in type Br, except that the first row and
column are omitted, so that the matrices have 2r rows and 2r columns and consist of four
r × r blocks m,n, p, q with q = −mT , nT = −n, pT = −p. The subspace D of diagonal
matrices consists of all sums

∑r
i=1 di(eii + er+i,r+i) The sums of matrix units that are

common eigenvectors of the commutation action of the matrices in D are the same as in
type Br, shifting all indices down by 1; the linear functions arising on D are now the ones
of the form ±(Ei + Ej),±(Ei − Ej) for 1 ≤ i < j ≤ r. The dimension of L is 2r2 − r.



We have now already met all but finitely many of the basic objects of study in the course!
We now construct an important group of automorphisms attached to any real or complex
Lie algebra L (or more generally any Lie algebra L over a field K of characteristic 0), called
its adjoint group. Let d be a nilpotent derivation of L, so that d[x, y] = [dx, y] + [x, dy] for
x, y ∈ L and dn = 0 for some n. Define the exponential ed of d by the usual power series∑

i = 0ndi/i!, taking d0 as usual to be the identity map; this makes sense for any field K
of characteristic 0 since it has only finitely many terms. By the definition of derivation and
the binomial theorem we compute that [edx, edy] = ed[x, y] for all x, y ∈ L; moreover ed is
invertible on L since its inverse is e−d. In particular if x ∈ L is such that ad x, the linear
map of bracketing with x, is nilpotent, then the exponential ex of ad x is an automorphism
of L. The group generated by all such automorphisms ex is by definition Int L, the adjoint
group of L. If the basefield K is R or C, then ex makes sense as an automorphism of L for
any x, not just one with ad x nilpotent; in these cases we take Int L to be generated by all
such ex. (Then Int L has the structure of a Lie group, whose Lie algebra is the quotient
L/Z of L by its centerI Z = Z(L), defined below.) If L is complex and semisimple then
the two definitions of Int L (one using all ex, the other using ex only for ad x nilpotent)
coincide.



We now introduce some important ideals of any Lie algebra L. Its derived algebra [LL]
is spanned (by definition) over the basefield K by all [x, y] as x, y range over L (it is not
true in general that the set of all brackets [xy] is closed under addition). More generally,
if I, J are ideals of L, then the Jacobi identity shows that [IJ ], spanned by all brackets
[xy] as x runs over I and y over J , is an ideal. Another ideal of L is its center Z(L),
consisting of all x ∈ L such that [xy] = 0 for all y ∈ L. We say that L is simple if its
dimension is larger than 1 and L has no ideals apart from itself and 0 (any 1-dimensional
Lie algebra is necessarily abelian and satisfies this condition, but we do not want to call
it simple). We say (for now) that L is semisimple if it is a finite direct sum ⊕iLi of
simple ideals Li, so that L is the direct sum of the Li as a vector space, each Li is
simple as a Lie algebra, and [LiLj ] = 0 if i 6= j; this is not the official definition but
will later be shown to be equivalent to it. In particular, if L is simple or semisimple,
we must have L = [LL], Z(L) = 0. Whenever Z(L) = 0, L is isomorphic to a linear Lie
algebra, that is, to a Lie algebra of matrices. To see this, note that the map from L to
gl(L) ∼= Mn(K) (i.e. to the set of linear maps from the K-vector space L to itself) sending
x to ad x is a Lie algebra homomorphism, by the Jacobi identity; its kernel is clearly
Z(L), so L is isomorphic to a subalgebra of Mn(K) if Z(L) = 0. This homomorphism
from L to Mn(K) is called the adjoint representation of L; more generally, any Lie algebra
homomorphism from L to some Mm(K) is called a representation, the definition paralleling
that of a representation of a group. The corresponding notion of L-module is a finite-
dimensional K-vector space M such that for every x ∈ L,m ∈ M there is x.m ∈ M such
that (x + y).m = x.m + y.m, x.(m1 + m2) = x.m1 + x.m2, kx.m = x.km = k(x.m) if
k ∈ K, and finally x.y.m − y.x.m = [xy].m for x, y ∈ L,m ∈ M . Thus L itself is always
an L-module.



As a challenging exercise, try to prove directly that L = sl(n) is a simple Lie algebra for
n > 1, over any field K of characteristic 0. The case n = 2, where L has basis h, x, y, where
h = e11−e22, x = e12, y = e21, is worked out in the text in §2.1; here [hx] = 2x, [hy] = −2y,
and [xy] = h. In general one shows that every nonzero ideal of L = sl(n) contains first one
matrix unit eij for i 6= j, then all such units, and finally all of L. The algebra L = gl(n)
of all n × n matrices over K is almost simple, but not quite; it has the ideals sl(n) and
K = Z(gl(n)), the latter consisting of all the scalar matrices.

While L has no proper ideals, certain subalgebras of it have many such ideals. Specif-
ically, the subalgebra t(n) of upper triangular matrices has the ideal u(n) = [t(n), t(n)] of
strictly upper triangular matrices (with zeroes on the diagonal) as an ideal; in fact, note
that t(n) is also an associative K-algebra under multiplication and u(n) is a two-sided
associative ideal of it. The quotient t(n)/u(n), either of Lie algebras or of associative al-
gebras, is naturally isomorphic to the (Lie or associative) algebra D = d(n) of diagonal
matrices, and D is abelian whether it is regarded as a Lie or associative algebra. Passing
to the derived subalgebra [u(n), u(n)] of u(n), we find that it consists of all strictly up-
per triangular matrices whose superdiagonals (immediately above the main diagonal) are
also 0; the quotient of u(n) by its derived algebra is again abelian. Iterating the derived
subalgebra construction, we find that we eventually get the 0 algebra.



More generally, given an arbitrary Lie algebra L, we define its derived series L(0), L(1), . . .
via L(0) = L,L(n) = [LL(n−1); if we then have L(n) = 0 for some n, then we call L solvable.
This notion is motivated by and is strongly analogous to a parallel notion for groups which
was defined much earlier, in fact by Galois. There are also parallel notions of something
called nilpotence for both Lie algebras and groups, but in that case the notion for Lie
algebras was defined first. We define the lower central series of an arbitrary Lie algebra L
by L0 = L,Ln = [LLn−1]; we say that L is nilpotent if Ln = 0 for some n. Equivalently, L
is nilpotent if and only if for some n all n-fold brackets [. . . [x1x2]x3] . . . xn] are identically
0 in L. Clearly any nilpotent Lie algebra is solvable, but the converse fails, since t(n) is
solvable but not nilpotent. (The notions of solvability and nilpotence for groups G can
be defined in the same way, defining [GG] as the commutator subgroup of G, and then
defining the derived and central series for G in the same way as for L.)


