Lecture 10-2

Continuing from last time, we now study the classical algebras (those belonging to one of the series A_{n}, B_{n}, C_{n}, or D_{n}), in more detail. Recall that the matrix unit $e_{i j}$ has 1 as its $i j$-entry while all other entries are 0 . There is a simple rule for commutating two such units: $\left[e_{i j} e_{k \ell}\right]=\delta_{j k} e_{i \ell}-\delta_{\ell} i e_{k j}$, where $\delta_{i j}$ is the Kronecker delta. In all cases the diagonal matrices will play a crucial role, since diagonalizable linear transformations are the easiest ones to understand and if d is diagonal than ad d will continue to act diagonalizably on the algebra of all matrices.

The simplest case is $L=\mathfrak{s l}(n)$ (type A_{n-1}), the Lie algebra of all $n \times n$ matrices of trace 0 . Here we have $\left[e_{i i} e_{i j}\right]=e_{i j}$. As mentioned previously, bracketing with a fixed diagonal matrix $d=\sum d_{i} e_{i i}$ of L defines a diagonalizable linear transformation from L to itself. The eigenvalues of this transformation depend on d in a linear way. More precisely, if d is as above, then $\left[d e_{i j}\right]=\left(d_{i}-d_{j}\right) e_{i j}$. If we define a linear function E_{i} on the vector space D of diagonal matrices via $E_{i}(d)=d_{i}$, then we can rewrite our last equation as $\left[d e_{i j}\right]=\left(E_{i}-E_{j}\right)(d) e_{i j}$. Here we must have $\sum_{i} d_{i}=0$, since we are only looking at matrices with trace 0 . Thus the dimension of our subspace D is $n-1$ rather than n; this is why we say that L is of type A_{n-1} rather than A_{n}. This subspace D is a subalgebra of L, in fact an abelian one where all brackets are 0 . (This will also be true of the subspace D of diagonal matrices in all the other classical algebras; in general the subscript n in the label X_{n} of a classical Lie algebra refers to the dimension of the subspace D in it). Here L is spanned by D together with all matrix units $e_{i j}$ with $i \neq j$. The dimension of L is thus $n^{2}-1$.

In all the other families of examples, there is a matrix M such that the Lie algebra consists of all matrices X that are skew-adjoint with respect to the from (\cdot, \cdot) given by $(v, w)=$ $v^{t} M w$, where the superscript t as usual denotes transpose, so that v^{t} is a row vector while w is a column one. Skew-adjointness with respect to this form translates to the condition on X that $M X=-X^{t} M$. We now consider each of the cases in turn.

Starting with $L=\mathfrak{s p}(2 r)$ (type C_{r}), the condition $M X=-X^{t} M$ says that the upper left $r \times r$ block m of X should be the negative transpose $-q^{T}$ of the lower right block q, while the upper right and lower left blocks n, p should equal their own transposes. Hence a typical diagonal matrix d in L takes the form $d=\sum_{i=1}^{2 r} d_{i} e_{i i}$, where $d_{r+i}=-d_{i}$ for $1 \leq i \leq r$. Letting E_{i} as above be the linear function sending $\sum_{i} d_{i} e_{i i}$ to d_{i} (for $1 \leq i \leq r$ only), we find that M is spanned by D together with the differences $\ell_{i j}=e_{i j}-e_{r+i, r+j}$ (for $1 \leq i, j \leq r, i \neq j$), the sums $\ell_{i j}^{\prime}=e_{i, r+j}+e_{j, r+i}$ (for $1 \leq i<j \leq r$), their transposes $\ell_{i j}^{\prime \prime}=e_{r+j, i}+e_{r+i, j}$, and the units $\ell_{i}=e_{i, r+i}$ and their transposes $\ell_{i}^{\prime}=e_{r+i, i}$. Then $\left[d \ell_{i j}\right]$ equals $\left(E_{i}+E_{j}\right)(d) \ell_{i j}$ if $i<j$ and $\left(-E_{i}-E_{j}\right)(d) \ell_{i j}$ if $j<i$, while $\left[d \ell_{i j}^{\prime}\right]=$ $\left(E_{i}-E_{j}\right)(d) \ell_{i j}^{\prime},\left[d \ell_{i j}^{\prime \prime}\right]=\left(E_{j}-E_{i}\right) \ell_{i j}^{\prime \prime},\left[d \ell_{i}\right]=2 E_{i}(d) \ell_{i},\left[d \ell_{i}^{\prime}\right]=-2 E_{i}(d) \ell_{i}^{\prime}$. The dimension of L is $r+r^{2}-r+2\left(r+(1 / 2)\left(r^{2}-r\right)\right)=2 r^{2}+r$; the dimension of D is r.

Now consider $L=\mathfrak{s o}(2 r+1)$ (type B_{r}). Now the condition $M X=-X^{t} M$ says that X has 0 as its 11-entry; the remaining blocks of entries b_{1}, b_{2} in its first row are the respective negative transposes of c_{2}, c_{1}, the remaining blocks of entries in its first column. The remainder of X consists of four blocks m, n, p, q as in the previous case, but this time with $q=-m^{T}, n^{T}=-n, p^{T}=-p$. Here D consists of all sums $\sum_{i=1}^{2 r+1} d_{i} e_{i i}$ with $d_{1}=$ $0, d_{r+i}=-d_{i}$ for $2 \leq i \leq r+1$ and L is spanned by D together with all differences $\ell_{i j}=$ $e_{i+1, j+1}-e_{r+j+1, r+i+1}($ for $1 \leq i, j \leq r, i \neq j)$, all differences $\ell_{i j}^{\prime}=e_{i+1, r+j+1}-e_{j+1, r+i+1}$ (for $1 \leq i<j \leq r$), all differences $\ell_{i j}^{\prime \prime}=e_{r+i+1, j+1}-e_{r+j+1, i+1}$ (for $1 \leq j<i \leq r$), and all differences $\ell_{i}=e_{1, r+1+i}-e_{i+1,1}, \ell_{i}^{\prime}=e_{1, i+1}-e_{r+1+1,1}$ (for $1 \leq i \leq r$). We have $\left[d, \ell_{i j}\right]=\left(\pm\left(E_{i}+E_{j}\right)(d) \ell_{i j}\right.$ (according as $i<j$ or $j<i$, as before), while we have $\left[d, \ell_{i j}^{\prime}\right]=\left(E_{i}-E_{j}\right)(d) \ell_{i j}^{\prime},\left[d \ell_{i j}^{\prime \prime}\right]=\left(E_{i}-E_{j}\right)(d) \ell_{i j}^{\prime \prime},\left[d \ell_{i}\right]=E_{i}(d) \ell_{i},\left[d \ell_{i}^{\prime}\right]=-E_{i}(d) \ell_{i}^{\prime}$, where $E_{i}(d)=d_{i+1}$ for $1 \leq i \leq r$. Here the dimension of D is again r and the dimension of L is again $2 r^{2}+r$. Notice that we get the same linear functions arising on D as in type C_{r}, except that $\pm 2 E_{i}$ is replaced by E_{i}.

