Lecture 10-2

Continuing from last time, we now study the classical algebras (those belonging to one
of the series A, B,,, Cy,, or D,,), in more detail. Recall that the matrix unit e;; has 1 as
its ij-entry while all other entries are 0. There is a simple rule for commutating two such
units: [e;jere] = djkeir — doiey;, where §;; is the Kronecker delta. In all cases the diagonal
matrices will play a crucial role, since diagonalizable linear transformations are the easiest
ones to understand and if d is diagonal than ad d will continue to act diagonalizably on
the algebra of all matrices.



The simplest case is L = sl(n) (type A,—1), the Lie algebra of all n x n matrices of trace
0. Here we have [e;ie;;] = €;;. As mentioned previously, bracketing with a fixed diagonal
matrix d = > d;e;; of L defines a diagonalizable linear transformation from L to itself.
The eigenvalues of this transformation depend on d in a linear way. More precisely, if d
is as above, then [de;;] = (d; — dj)e;;. If we define a linear function E; on the vector
space D of diagonal matrices via E;(d) = d;, then we can rewrite our last equation as
[dei;] = (Es — Ej)(d)e;;. Here we must have ) . d; = 0, since we are only looking at
matrices with trace 0. Thus the dimension of our subspace D is n — 1 rather than n; this
is why we say that L is of type A,,_; rather than A,,. This subspace D is a subalgebra of
L, in fact an abelian one where all brackets are 0. (This will also be true of the subspace
D of diagonal matrices in all the other classical algebras; in general the subscript n in the
label X,, of a classical Lie algebra refers to the dimension of the subspace D in it). Here
L is spanned by D together with all matrix units e;; with ¢ # j. The dimension of L is
thus n? — 1.



In all the other families of examples, there is a matrix M such that the Lie algebra consists
of all matrices X that are skew-adjoint with respect to the from (-,-) given by (v,w) =
vt Mw, where the superscript ¢t as usual denotes transpose, so that v? is a row vector while
w is a column one. Skew-adjointness with respect to this form translates to the condition
on X that MX = —X*M. We now consider each of the cases in turn.



Starting with L = sp(2r) (type C.), the condition MX = —X'M says that the upper
left » x r block m of X should be the negative transpose —¢”? of the lower right block g,
while the upper right and lower left blocks n,p should equal their own transposes. Hence
a typical diagonal matrix d in L takes the form d = 222;1 d;e;;, where d,y; = —d; for
1 <i <r. Letting E; as above be the linear function sending ) . d;e;; to d; (for 1 <i <r
only), we find that M is spanned by D together with the differences ¢;; = €;; — eryirt;
(for 1 < i,5 < ri # j), the sums E;j = €iryj + €jr+i (for 1 < i < j < r), their
transposes E;’] = €4, + €rti j, and the units ¢; = e; .4, and their transposes ¢, = e,4; ;.
Then [dl;;] equals (E; + E;)(d){;; if i < j and (—E; — Ej)(d); if j < i, while [df};] =
of Lisr+1%—r+2(r+(1/2)(r?> —r)) = 2r* + r; the dimension of D is 7.



Now consider L = so(2r + 1) (type B,). Now the condition MX = —X'M says that
X has 0 as its 1l-entry; the remaining blocks of entries by, by in its first row are the
respective negative transposes of cg, ¢1, the remaining blocks of entries in its first column.
The remainder of X consists of four blocks m, n, p, q as in the previous case, but this time
with ¢ = —m”,nT = —n,p’ = —p. Here D consists of all sums 212:{1 d;e;; with dp =
0,dyy; = —d; for 2 <4 <r+1 and L is spanned by D together with all differences ¢;; =
€it+1,j+1 — Cr4j+1,r+it+1 (fOI' 1 S ’L,j S T,i 7£ _]), all differences 623 = €i+l,r+j+1 — €j+1,r+i+1
(for 1 <4 < j < r), all differences £; = erpiy1j41 — €rpjyripr (for 1 < j < i < r),
and all differences ¢; = e1,y14i — €i41.1,0; = €141 — €141, (for 1 < i < r). We
have [d,4;;] = (£(E; + E;)(d)¢;; (according as i < j or j < i, as before), while we have
d. 0] = (By — E;)(d)0y, [de] = (B, — E;)(d)t, [d0] = Ey(d)ts, [4€] = —By(d)£}, where
E;(d) = d;11 for 1 < ¢ < r. Here the dimension of D is again r and the dimension of L
is again 2r2 + r. Notice that we get the same linear functions arising on D as in type C,,

except that +2F; is replaced by F;.



