HW \#1, DUE 4-7

MATH 506A

1. Let R be a (commutative) ring such the localization R_{M} of R at any maximal ideal M is Noetherian and such that there are only finitely many maximal ideals containing any nonzero element of R. Show that R is Noetherian. (Let $I \neq 0$ be an ideal of R and let M_{1}, \ldots, M_{r} be the maximal ideals containing it. Choose $x_{0} \in I, x_{0} \neq 0$ and let M_{1}, \ldots, M_{r+s} be the maximal ideals containing x_{0}. For $1 \leq j \leq s$ pick $x_{j} \in I, x_{j} \notin M_{r+j}$. The ideal $I R_{M_{i}}$ is finitely generated for $1 \leq i \leq r$, so we can choose $x_{s+1}, \ldots, x_{t} \in I$ whose images generate $I R_{M_{i}}$ for $1 \leq i \leq r$. Let $I_{0}=\left(x_{0}, \ldots, x_{t}\right) \subset R$. Show that I_{0} and I generate the same ideal in R_{M} for all maximal ideals M of R and deduce that $I_{0}=I$.)
2. Let $R=K\left[x_{1}, \ldots\right]$ be the polynomial ring in infinitely many variables x_{i} over a field K. Let m_{1}, m_{2}, \ldots be an increasing sequence of integers such that $m_{i+1}-m_{i}>m_{i}-m_{i-1}$ for all i (e.g. $m_{i}=2^{i}$) and let $P_{i}=\left(x_{m_{i}+1}, \ldots, x_{m_{i+1}}\right)$ be the prime ideal of R generated by the given variables. Let S be the complement of the union of the P_{i}. Show that the localization $S^{-1} R$ satisfies the hypotheses of Problem 1, so that $S^{-1} R$ is Noetherian. Also show that each $S^{-1} P_{i}$ has height $m_{i+1}-m_{i}$, so the dimension of the Noetherian ring $S^{-1} R$ is infinite.
3. Let P_{1}, \ldots, P_{m} be prime ideals in a polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$ (with K algebraically closed) such that no P_{i} contains another. The intersection I of the P_{i} is then a radical ideal. Show that the multiplicity of each P_{i} in the R-module R / I (as defined last quarter) is one, by setting $I_{j}=\cap_{i=j}^{m} P_{i}$ for $1 \leq j \leq m, I_{m+1}=R$, filtering R / I by the increasing intersections $I_{1} / I, I_{2} / I, \ldots, I_{m+1} / I$ and showing that, when localized at P_{i}, exactly one graded piece I_{j} / I_{j-1} is isomorphic to R / P_{i} while the others are 0 .
4. Suppose that R is complete with respect to an ideal I and that M is an R-module. Call M separated with respect to I if $\cap_{n} I^{n} M=0$. Show that if M is separated and the images of $m_{1}, \ldots, m_{n} \in M$ generate $M / I M$, then the m_{i} generate M.
5. The Jacobson radical J of a commutative ring R is the intersection of all maximal ideals of R. Show that J consists exactly of those $r \in R$ such that $1+x r$ is a unit for all $x \in R$. Deduce that if R is complete with respect to an ideal I, then (the image of) I lies in the Jacobson radical of R.
