
LECTURE 5-5

One more topic from Chapter 10 of Eisenbud: we call a sequence x1, . . . , xd of elements
in a ring R a regular sequence, or R-sequence, if the ideal (x1, . . . , xd) is proper and for
each i the image of xi+1 in R/(x1, . . . , xi) is a non-zero-divisor. Recall from last quarter
that a Noetherian local ring R of dimension d is called regular if its maximal ideal is
generated by d elements (the minimum possible); then any set of d generators of this ideal
is called a system of parameters. We saw last quarter that a regular local ring must be an
integral domain, since its associated graded ring with respect to the standard filtration by
powers of the maximal ideal is a polynomial ring over the quotient by this maximal ideal.
Since R/(x1, . . . , xi) is regular local whenever R is and x1, . . . , xd generate the maximal
ideal, it follows that any system of parameters is a regular sequence; the image of xi+1 in
R/(x1, . . . , xi) cannot be 0, lest the maximal ideal be generated by fewer than d elements.
We will return to regular sequences in Chapter 18.

Following Chapter 11 of Eisenbud, we now treat general Noetherian rings from the
viewpoint of our earlier study of Dedekind domains, generalizing a number of results for
ideals in a Dedekind domain to primes of codimension one in a Noetherian domain. Our
first major result states that a Noetherian domain R is normal (=integrally closed) if and
only if for every prime ideal P associated to a principal ideal I (that is, to the module
R/I), the localization PP = PRP of P in RP is principal.

Before starting the proof, we note that the condition that PP be principal implies
that the codimension of P is 1, by the principal ideal theorem, so the given condition
implies that every prime associated to a principal ideal has codimension one. Next, if P
has codimension 1, so that RP is one-dimensional, then we have seen last quarter that
PP is principal if and only if RP is a discrete valuation ring (DVR). Hence our necessary
and sufficient condition is equivalent to requiring that every localization of R at a prime
of codimension one is a DVR and that every prime associated to a principal ideal has
codimension 1. Now we can begin the proof. We first show that the given condition implies
that R is normal. Since the intersection of normal domains with the same quotient field is
obviously again normal, it is enough to show that R is the intersection of its localizations
at primes minimal over principal ideals. We will prove a more general result, valid for
reduced rings (with nilradical 0, or equivalently with no nonzero nilpotent elements): if R
is reduced and Noetherian, then an element in its total quotient ring K(R) (obtained from
R by localizing by all non-zero-divisors) lies in R if and only if the image of x in K(R)P
lies in RP for all primes P associated to principal ideals generated by non-zero-divisors. To
see this, let a/u ∈ K(R) with a, u ∈ R and u not a zero divisor. If a/u /∈ R, then a /∈ (u),
whence the image of a fails to lie in (u)Q for some prime Q containing u and hence also
for some associated prime Q of R/(u) (since m = 0 for an element m of an R-module M
if and only if the image of m in MP f is 0 for every maximal associated prime of M). Now
we prove the converse. If R is normal and P is associated to (a) for some principal ideal
(a), then P is the annihilator of some b ∈ R mod (a), with b /∈ (a). We must show that PP

is principal. Localizing if necessary, we may assume from the outset that R is local with



maximal ideal P . Let K be the quotient field of R and set P−1 = {x ∈ K : xP ⊂ R}; we
generalize this definition to any ideal I of R. We clearly have P ⊂ P−1P ⊂ R, so the only
possibilities are P−1P = P or P−1P = R (since P is maximal). The first possibility would
imply by the finite generation of P that every element of P−1 is integral over R, forcing
P−1 = R by normality; but Pb ⊂ (a), implying b/a ∈ P−1 = R, b ∈ (a), a contradiction,
so we must have P−1P = R. Then rP is not a subset of P for some r ∈ P−1, forcing rP
to contain a unit of R and thus rP = R. Then P = Rr−1 is principal, as desired.

As a consequence every normal Noetherian domain is the intersection of its localiza-
tions at codimension-one primes, for we have shown that any reduced ring is the intersection
of its localizations at primes associated to (the ideals generated by) non-zero-divisors, and
we have just shown that such primes must be principal, forcing them to have codimension
one. The geometric version of this corollary states that if X is a normal variety (having
normal coordinate ring) and if Y ⊂ X has codimension at least 2, then any rational func-
tion regular on X−Y extends to one regular on X. There is an analogous fact in complex
variables: if X is a normal analytic variety (in an analogous but different sense from the
one above) and if Y is a subset of codimension at least 2, then any meromorphic function
on X holomorphic outside Y is in fact holomorphic in X.

Serre (a very famous name you will soon get to know if you haven’t already) observed
that the condition of our main result applies much more generally to rings that are not
domains; by modifying them slightly we can distinguish normal rings among Noetherian
rings. Here a normal ring is a reduced ring integrally closed in its total quotient ring. Then
it turns out that a normal ring is a direct product of normal domains, so if the ring is local
or graded, it must in fact be a domain already. That is, a Noetherian ring R is a finite
direct product of normal domains if and only if (R1) every associated prime of a principal
ideal generated by a non-zero-divisor has codimension one, while every associated prime
of 0 has codimension 0; and (S2) every localization of R at a codimension-one prime is a
DVR, while every localization of R at a codimension-0 prime is a field.

The R in the first condition stands for “regular”, while the S in the second one stands
for Serre. We will give the proof next time.


