
LECTURE 5-31

We now review the four ways that we have discussed to measure the size of an affine
domain R over a field k. The last one we introduced is the easiest to define; it is just the
transcendence degree of k of the quotient field K of R. We defined the dimension of R
in this way only quite recently, but we could have done it last quarter, as we saw then
that any such R (indeed any affine ring, domain or not) is a finite integral extension of
some polynomial ring k[t1, . . . , td]; being thus not much larger than k[t1, . . . , td] itself, it
is natural to take its dimension to be d, and this is indeed the transcendence degree of its
quotient field if R is a domain (though if R is not a domain, we have to be a bit careful,
as there is no single field canonically attached to R, and its variety might have different
components of different dimension).

The other three measures of dimension all involve a choice of maximal ideal M of R,
though all give the same answer for every M , at least for domains R. The first of these
(Krull dimension) is mentioned already in Dummit and Foote; it is the supremum of the
lengths n of all strictly increasing chains of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn = M in R
ending at M . It is not at all obvious a priori that this supremum is finite, and in fact
it need not be if one looks at all chains not ending in a fixed maximal ideal, but in our
situation the supremum is indeed finite.

Next we have the rate of growth of powers of M , more precisely the dimension of the
quotient Mn/Mn+1 (or more generally the quotient of two successive terms of a stable
M -filtration of R) as a vector space over the field R/M . This dimension is a polynomial
in n for sufficiently large n, whose degree is the dimension of R. The leading term of
this polynomial gives more refined information about the rate of growth of powers of M ,
which we have used to define the notion of multiplicity (replacing M by a finitely generated
R-module N and using a finite filtration of N whose graded pieces take the form R/P for
various prime ideals P of R; the multiplicity counts the number of times R/P occurs in
N).

Finally we have the minimal number of generators required for any ideal containing
a power Mn of M , or equivalently any ideal with radical M . We showed that any prime
ideal of codimension d is minimal over some ideal (x1, . . . , xd) with the xi ∈ P ; if we
allow one more generator xd+1 we can guarantee that P is the only minimal prime over
(x1, . . . , xd+1), or equivalently the radical

√
(x1, . . . , xd+1) = P . Whether one can replace

these last d + 1 generators with d generators (of P up to radical) is one of the great open
questions in algebraic geometry, for homogeneous prime ideals P of polynomial rings of
codimension one over algebraically closed fields k. In particular the dimension of M/M2

over R/M (where M is maximal in a Noetherian ring R) is always at least the codimension
of M ; if equality holds, R is said to be nonsingular at M . If R is affine over k and
nonsingular at some maximal ideal M with A/M ∼= k, then the associated graded ring
GM (R) is just the polynomial ring in dimR variables over k; so in some sense every
Noetherian ring R nonsingular at a maximal ideal M looks like a polynomial ring over
R/M to a first approximation.



We have shown in class that a ring is Artinian if and only if it is Noetherian and
has dimension 0; any Artinian ring is a finite direct product of Artinian local rings, in
each of which the maximal ideal is nilpotent. An Artinian affine ring is necessarily finite-
dimensional (not just finitely generated) over its basefield k. The next simplest situation
occurs when R is a Noetherian domain of dimension one, so that every nonzero prime
ideal is maximal. To get a really nice theory of such rings one needs a further assumption
on R; usually this is taken to be that R is integrally closed in its quotient field. Then
every nonzero ideal of R is uniquely a product of prime ideals, every primary ideal of R
is a power of prime ideal (and conversely every power of a prime ideal is primary), and
every localization RP of R at a prime ideal P is a DVR (a PID with only one nonzero
prime ideal). Nonzero ideals of R form a group under multiplication if one mods out by
the principal ideals; this is called the class group of R and in general can be any abelian
group, but in the special case where R is the integral closure of Z in a finite extension
K of Q this group is finite. It may be identified with the Picard group of isomorphism
classes of invertible modules that we studied this quarter (for Dedekind domains, but not
in general).

We will wrap up by a saying a few words about complete rings next time.


