
LECTURE 5-26

In this last lecture on new material we sketch a few results on regular sequences and
Cohen-Macaulay rings (Chapters 17 and 18 of Eisenbud); the latter are a very important
class of rings capturing and generalizing the key nice properties of affine rings that we
observed in Chapter 13. We have already defined the notion of regular sequence in Chapter
10: given a proper ideal I of R, a sequence x1, . . . , xd of elements in I is regular if xi is
a non-zero-divisor in R/(x1, . . . , xi−1 for all i. The depth of I, denoted depth(I), is the
length of the longest possible regular sequence. A basic result proved in Chapter 17, using
the Koszul complex, is that the depth of every ideal I of a Noetherian ring R is finite and
in fact bounded by the codimension of I; moreover, any two maximal regular sequences in
I have the same length. One should think of the depth as an arithmetic measure of the size
of I, while the codimension is a geometric measure of size. Like the codimension of I, its
depth turns out to depend only on the radical of I; again like the codimension, the depth of
an ideal I generated by r elements is at most r. More generally, if M is an R-module and I
an ideal with IM 6= M , then a regular M -sequence in I is a sequence x1, x2, . . . of elements
of I such that xi is a not a zero divisor on M/(x1, . . . , xi−1)M for any i; then any two
maximal M -sequences in I have the same length, denoted depth(I.M). For M = R this
reduces to depth(I) as defined above. If IM = M , then by convention depth(I,M) =∞.
Generalizing the above inequality for depth(I), we find that depth(I,M) is bounded above
by the length of any maximal chain of prime ideals descending from a prime ideal containing
I to an associated prime of M . The proof, as for codimension, is inductive, using a crucial
lemma that if R is local with maximal ideal P,M is finitely generated over R, I is an ideal
of R, and y ∈ P , then depth((I, y),M) is at most depth(I,M) plus one. This depth can
be measured in cohomological terms, as the smallest degree for which the so-called Koszul
complex attached to I and M has nonvanishing cohomology.

A ring R is said to be Cohen-Macaulay if the depth of any maximal ideal P equals
its codimension; if so, then any proper ideal I of R has the same depth and codimension.
This property localizes in a nice way: R is Cohen-Macaulay if and only if RP is for every
maximal ideal P , or if and only if RQ is for every prime ideal Q. Also a local ring is
Cohen-Macaulay if and only if its completion is. Then a key result states that Cohen-
Macaulay rings are universally catenary; moreover, in a local Cohan-Macaulay ring R any
two maximal chains of prime ideals have the same length and every associated prime of
R is minimal. Moreover, a local Cohen-Macaulay ring is equidimensional in the sense
that all maximal ideals have the same codimension and all minimal primes have the same
dimension. A closely related result first proved by Macaulay for polynomial rings is the
Unmixedness Theorem, stating that if an ideal I in a Noetherian ring R is generated by n
elements and has codimension n, then all minimal primes over that ideal have codimension
n. If moreover R is Cohen-Macaulay then every associated prime of I is minimal over I.
A nice example comes from a situation arising earlier. Let R be a Cohen-Macaulay ring
(e.g. a field) and S the polynomial ring in pq variables over R (known to be again Cohen-
Macaulay). Label the variables as xij with 1 ≤ i ≤ p, 1 ≤ j ≤ q and set up a p× q generic



matrix M whose ij-th entry is the variable xij . Then the quotient of S by the ideal
generated by the r × r minors of M is Cohen-Macaulay, for any r at most the minimum
of p and q.

We now start reviewing the course (a little early, since there is no class on Monday).
You are responsible only for the material in Atiyah-Macdonald, including the Dedekind
domain results that were already covered last quarter. We begin with the material on
primary decomposition and associated prime ideals. For simplicity, we focus here on ideals,
which already capture all features of the more general case of modules. Any ideal I in a
Noetherian ring R (and some other rings) admits a primary decomposition, realizing it as
a finite intersection of primary ideals, which are ideals J such that whenever a product xy
lies in J , then either x ∈ J or yn ∈ J for some n; equivalently, every zero divisor in R/J
is nilpotent. We normalize our decompositions ∩IQi so that the Qi have distinct radicals
and no Qi contains the intersection of the others. Any primary ideal Q has a prime radical
P ; we say that Q is P -primary. Then the radicals of the primary ideals occurring in any
decomposition of a fixed ideal I depend only on I, as do the primary ideals themselves
corresponding to primes in this set of radicals not containing others (isolated primes). We
know already from last quarter that there are only finitely many minimal primes containing
an ideal I; all isolated primes attached to I occur in this list. The union of their images
in the quotient ring R/I coincides with the set of zero divisors in this ring; in particular
the set of zero divisors in a Noetherian ring is the union of finitely many minimal primes.


