LECTURE 5-24

We now sketch a few of the main ideas in Chapter 15. We work throughout with the
polynomial ring S = k[z1,...,z,],k a field. We begin with the simple observation that
ideals of S generated by monomials (monomial ideals) are much easier to compute with
than general ones; for example, it is quite easy to compute the greatest common divisor or
least common multiple of any pair of monomials. More generally, if F' is a free S-module
with basis {e;}, then submodules of T" generated by monomials times basis vectors (called
monomials in F' are easier to work with than general submodules. We need a systematic
way to pick out particular monomial terms from elements of F', To this end, we introduce
a monomial order on the monomials of any finitely generated free module F' over S; this
is a total order > such that if mj, ms are monomials of F' and if n # 1 is a monomial
of S, then my; > my implies nmy; > nms > mo. We give three examples; in all of them
the variables are ordered so that xy > --- > x,. The first is lexicographic order, in which
m = z{'... .zl < m = xlil ...xb if a; < b; for the first index i for which a; # by;
the next is homogeneous lexicographic order, in which the condition for m < m/ is that
either degm < degm’ or degm = degm’ and m < m’ in the lexicographic order. Finally,
we have reverse lexicographic (revlex) order, in which the condition for m < m’ is that
degm < degm’ or degm = degm/ and a; > b; for the last index i for which they differ.
Note that so far we have ordered only the monomials in S, not those of F'; we supplement
the order by totally ordering the basis vectors as well, and then taking the lexicographic
product of these orders to totally order terms in F'. Any monomial order on F'is Artinian
in the sense that every nonempty set of monomials has a least element. We extend the
notation to terms (scalar multiples of monomials): if um,vn are terms with u, v nonzero
elements of k, then we decree that um > vn whenever m > n and similarly for >. Then
any f € F has an initial term in(f) (with respect to >), which is the >-largest term
occurring in f; likewise any submodule M of F' has an initial submodule in(M) generated
by the initial terms of all of its elements. Then an important result of Macaulay asserts
that if F' is a free S-module with basis, M a submodule of F', and if > is a monomial order,
then the set B of monomials not in in(M) forms a basis for F'/M. Indeed, to show that B
is linearly independent, note that if there were a dependence relation p = ) . u;m; € M
with the m; € B and the u; nonzero elements of k, then in(p) would lie in in(M). But
in(p) is one of the u;m; and m; is in B, this is a contradiction. Now if B did not span
F/M, then among the elements of F' not in the span of M and B we could take f to be one
with minimal initial term in(f). If in(f) were in B, we could subtract it from f, getting a
polynomial not in the span with a smaller initial term, a contradiction, so we may assume
that in(f) € in(M). Subtracting an element of M with the same initial term as f results
in a similar contradiction.

A Grébner basis of a submodule M of a free module F' with basis is a set of elements
g1,--.,g¢ of M such that in(gy1),... ,in(g:) generates in(M). Note that if N C M are
submodules with in(N) = in(M) with respect to a monomial order, then N = M, for
otherwise there would be f € M not in N whose initial term is smallest among initial



terms of elements not in N, and then in(f) = in(g) for some g € N. But then f — g €
M,f—g ¢ N, and f — g has smaller initial term than f, a contradiction. Hence any
Grobner basis is automatically a set of generators (though it may not be minimal as
such). Such bases always exist for any submodule M, as given any set of generators we
may enlarge it to another set whose initial elements generate in(M). A Grdébner basis
gi,---,G¢ is said to be minimal if no initial term of any g; divides the initial term of
another; clearly any Grobner basis can be shrunk to a minimal one. Now if F' is a free S-
module with basis, we have a fixed monomial order <, and we are given g1,... ,g:, f € F|,
then we can perform the following construction. Supposing inductively that monomials
mi,...,mp in S and elements g ,...,gs, have been chosen, set f' = f — > mygs,; if
f' # 0 and some in(g;) divides a monomial term of f, let m be the greatest such term, set
Sp+1 = G, mpyr1 = m/in(g;), 7 = f' — mpy19;, and continue inductively, relabelling f” as
f’. The process ends after finitely many steps, either with f’ = 0 or with no monomial
term of f’ divisible by in(g;) for any ¢; we call f’ the remainder of f (with respect to the
g;) and the expression f = > m;g; + f' standard (note however that it is not uniquely
determined by f and the g;, though we can modify the algorithm to make it unique).
Given a free module F' with basis and g1,...,9: € F, let ¢, be the initial term of g;.
For each pair of indices i, for which g/, g;- involve the same basis element ey, there are
monomials m;;, mj; € S such that g;; = mj;9; —m;;g; has a lower initial term than either
m;igi Or m;;g;; let h;; be the remainder of g;; with respect to the g;, setting h;; = 0 if
gi, g; do not involve the same basis element. Then Buchberger’s Criterion asserts that
gi,--.,9: form a Grobner basis for the submodule they generate if and only if h;; = 0 for
all i and j. As an example, take g; = 22, g = zy + 4?2 in k[, y], and order the monomials
lexicographically, taking x > y. The initial terms are 22, zy, whose ged is x. Applying the
division algorithm to g1, g2, we get yg1 — 9o = —xy?, whose remainder with respect to
g1, go is y2, which is not divisible by either of the initial terms we have, so we add y> to the
basis. Then g1 = x2, g2 = zy + y2, g3 = 3> is a Grobner basis. As a bonus, we obtain all
syzygies (relations) among the elements of this basis (Theorem 15.10 in Eisenbud): these
relations are generated by the single one x2gy — (xy + y?)g1, together with the formula
93 = yg1+ (y —x)gs that arose from the construction of g3. In fact, every finitely generated
S-module has a resolution by free modules of length at most n (Hilbert’s chain-of-syzygies
theorem).



