LECTURE 5-12

Continuing in Chapter 11 of Eisenbud, we prove further results about ideals of codi-
mension one in Noetherian rings R. Say that an ideal I has pure codimension one if every
associated prime ideal of I (that is, of the quotient ring R/I as an R-module) has codimen-
sion one; the term unmixed is often used instead of pure. The trivial case I = R is included
in the definition. Then if R is a Noetherian domain such that for every maximal ideal P
the ring Rp is a UFD and if I C R is an ideal, then [ is invertible (as a module or an ideal)
if and only if it has pure codimension one. If I C K(R) is an invertible fractional ideal,
then I is uniquely expressible as a finite product of powers of prime ideals of codimension
one. Thus C(R) is a free abelian group generated by the codimension one primes of R.

To prove this suppose first that I is invertible. If we localize at any maximal ideal then
I becomes principal, generated by a non-zero-divisor. Since a UFD is integrally closed, an
earlier theorem shows that I is pure of codimension one. Conversely, if P is a prime ideal
of codimension one and M is maximal, then either P C M, in which case Py; C Ry is
principal since Ry is a UFD, or P ¢ M, in which case Py; = Rjs; in both case Py =2 Ry,
so P is invertible.

Now we show that any ideal I of pure codimension one is a finite product of codi-
mension one primes. Since a product of invertible ideals is invertible, this will show that
I is invertible as well. Suppose for a contradiction that some ideals of pure codimension
one do not have this property and let I be maximal among such. Since I = R may be
viewed as the empty product (by convention), we may assume that I # R. Let P be a
codimension one prime containing I. Since P is invertible we have P~'P = R and thus
P! properly contains R. If P~'I = I, then P~! would consist of elements integral over
R; but since Rp is a UFD it is normal, forcing P~! C R, which is false. Hence P~'I
properly contains I and it is a finite product of primes, forcing I = PP~'I to be such a
product as well, as desired. By our previous result every invertible fractional ideal may
be expressed as a product of powers of codimension one prime ideals (allowing negative
powers). It remains to show that two expressions of the same ideal as products of powers
of codimension one primes agree up to reordering the factors. Multiplying the expressions
by a suitable product of positive powers of primes , we may assume that all powers in both
of them are nonnegative. We argue by induction on the sum of the powers in say the first
expression. If it is 0, then the first product equals R and the result is immediate. If it
is at least 1, then the first product lies in one term (J; appearing in the second product,
forcing some prime ideal to occur in both expressions (since all prime ideals in sight have
codimension one). Cancelling by this prime ideal (by multiplying both sides by its inverse),
we reduce this sum and complete the proof.

In particular (as we saw already last quarter) isomorphism classes of nonzero ideals
in a Dedekind domain R (or equivalently nonzero ideals modulo principal ideals) form a
group under composition, which before we called (and can still call in this setting) the
class group, but which now is also the Picard group of R. This group is finite if R is the
integral closure of Z in an algebraic number field (a finite extension of Q); we will not



prove this, as to do so requires techniques special to algebraic number theory that do not
pertain to commutative algebra. If R is instead the coordinate ring of a smooth curve over
an algebraically closed field, then Pic(R) is finite if and only if R if the curve is rational
(birational to P!). Otherwise the curve will have positive genus g and the Picard group
will involve 2g copies of the complex torus (=unit circle in the complex plane). In general,
the Picard group of a Dedekind domain can be any abelian group A.

The story is very different even for Noetherian domains of dimension one that are not
Dedekind domains. For example, as you will see in later homework, the Plcard groups of
the curves defined by the equations y? = 2% and y? = 2?(z+1) over an algebraically closed
field K are K (as an additive group) and K* (as a multiplicative group), respectively. In
the first case, the principal ideal (x) of the coordinate ring is not a product of prime ideals;
indeed, the only prime containing it is (z,y), and it is not a power of this ideal.

We now refine and extend the familiar notion of divisor in a commutative ring to
ideals. Clearly an element b divides another one a if and only if a € (b); thus an ideal may
be regarded as something by which an element might be divisible. Since nonzero ideals in
a Dedekind domain are uniquely products of prime ideals, they correspond to finite sets
of prime ideals, each occurring with some multiplicity. Accordingly (but more generally)
we now call an element of the free abelian group generated by the codimension one prime
ideals in a ring R a divisor, or more precisely a Weil divisor, of R; this group is denoted
Div(R). The elements of the previously described group C'(R) of invertible ideals of R will
now be called Cartier divisors. In general these two sets are very different, but we will see
next time that there is a natural homomorphism from C(R) to Div(R).



