
LECTURE 5-10

We continue with proving the result stated last time. Let I be an invertible ideal;
we must show that it embeds into K(R). We know that K(R), as an Artinian ring,
is semilocal; that is, it has only finitely many maximal ideals, these all taking the form
PK(R), where P is a maximal associated prime of R. For every such P , we have I⊗K(R) =
IP ∼= RP

∼= K(R)PK(R). By Exercise 4.13 (to be included in next week’s HW) this forces
I ⊗K(R) ∼= K(R). Next we show that the localization map φ : I → K(R)⊗ I = IU , U the
set of non-zero-divisors in R, is injective; to do this it is enough to show that it is injective
when localized at a maximal ideal P . The map φP is the localization map sending IP
isomorphically onto RP and then to K(R) ⊗ RP = (RP )U ; as the element of U are not
zero divisors, φP is injective, as required. The map I → K(R)⊗ I ∼= K(R) is the desired
embedding; we have already seen that I is finitely generated. Now suppose that I ⊂ K(R)
is a finitely generated fractional ideal such that I ∩R consists of zero divisors. Because I
is finitely generated, there is a non-zero-divisor u ∈ R such that uI ⊂ R ∩ I ⊂ R ⊂ K(R).
Since I ∩R consists of zero divisors, there is a nonzero b ∈ R annihilated by R∩I and thus
by uI. Then I is annihilated by ub; localizing at a prime P containing the annihilator of
ub, we find that IP 6∼= RP , so I is not invertible.

Next let I, J ⊂ K(R) be invertible. We first show that the natural surjection I⊗J →
IJ is injective. It suffices to show that for any prime P of R the map IP ⊗RP

JP →
(IJ)P ⊂ K(R)P is injective. Now K(RP ) is a localization of K(R)P and it suffices to
show that the composite map to K(RP ) is injective. Thus we may assume from the
outset that R is local. In this case I ∼= J ∼= R, so I and J are generated as R-modules
by non-zero-divisors s, t ∈ K(R), whence st is a non-zero-divisor. The composite map
R ∼= R ⊗ R ∼= I ⊗ J → IJ = Rst ⊂ K(R) is then multiplication by st and so indeed
injective. Next we show that the natural map I−1J → homR(I, J) sending t to φt is an
isomorphism. By the previous part we can find a non-zero-divisor v ∈ R ∩ I. If t is a
nonzero element of I−1J , then tv 6= 0, so t induces a nonzero element of homR(I, J) and
the map I−1J → homR(I, J) is one-to-one. To show that it is onto, let φ ∈ homR(I, J)
be arbitrary and set φ(v) = w. We claim that φ = φw/v; in fact, we claim that if any
two homomorphisms φ, ψ from I to K(R) agree on v, then they coincide; it suffices to
show that this true after localization. The element v corresponds to a non-zero-divisor in
RP under the isomorphism IP ∼= RP . The localizations φP , ψP may then be regarded as
homomorphisms from RP to K(R)P agreeing on the non-zero-divisor v. But then they
must agree on 1, so everywhere.

Finally, let I ⊂ K(R) be an invertible module. By the previous part the isomorphism
I∗ ⊗ I → R may be identified with the multiplication map I−1 ⊗ I → R, so I−1I = R.
Conversely, if I ⊂ K(R) is an R-submodule with I−1I = R, then we can localize, supposing
that R is local with maximal ideal P ; we must show that I ∼= R. By hypothesis there is
v ∈ I−1 with vI 6⊂ P , forcing vI = R. But then v is not a zero divisor, so multiplication
by v is an isomorphism from I to R.

Since the tensor product is associative, the set of isomorphism classes of invertible



R-modules forms a group under the tensor product, with the identity being the class of R
and inverse of the class of I being that of I∗. This group is called the Picard group of R
and is denoted Pic(R). Similarly, the set of invertible submodules of K(R) is a group under
multiplication, with the inverse of I being I−1. This is called the group of Cartier divisors
of R and is denoted C(R). Thanks to the second part of the last theorem, the natural map
C(R)→ Pic(R) is surjective; it takes the principal divisor generated by any unit of K(R)
to the identity. We have Ru = Rv if and only if u, v differ by a unit in R, so the group of
principal divisors under multiplication is identified with the quotient group K(R)∗/R∗. If I
is an invertible divisor (= invertible module) and Ru a principal visiro, then (Ru)I = uI.
We now claim that that if I, J ⊂ K(R) are invertible divisors and if φ : I → J is an
isomorphism, then I = uJ for some u ∈ K(R)∗. Since homR(I, J) = I−1J , any such φ
is certainly multiplication by some u ∈ K(R); similarly its inverse is multiplication by
some v ∈ K(R). Since I contains a non-zero-divisor, the product uv must equal 1, so
u, v are indeed units in K(R). Hence the kernel of the natural map C(R) → Pic(R) is
isomorphic to K(R)∗/R∗. Moreover, the group C(R) is generated by the invertible ideals
of R, for if I ⊂ K(R) is invertible, then I−1 contains a non-zero-divisor a ∈ R, forcing
aI ⊂ R, I = aI(a)−1.


