LECTURE 5-1

Continuing with valuation rings (Chapter 5 of Atiyah-Macdonald) we now relate gen-
eral valuation rings more tightly to the discrete ones we studied earlier. Let G be a totally
ordered additive abelian group, so that there is a subset P of G such that 0 ¢ P, for every
g € G with g # 0 we have that exactly one of g, —g € P, and finally g + h € P whenever
g,h € P. Define the total order < on G via g < h'if h = g or h — g € P; one checks
immediately that this relation is reflexive, antisymmetric, and transitive. Given a field K,
a G-valuation on it, or just a valuation, is a map v : K* — G such that v(zy) = v(z)+v(y)
for all z,y and v(x + y) > min(v(z), v(y) whenever x 4+ y # 0. We call G the value group.
The corresponding valuation ring A of K is the subring consisting of all elements x with
v(z) > 0, together with 0; conversely, if A is a valuation ring of K, U the group of units
in A, and v the canonical map from K* to the (multiplicative) group G = K*/U, then we
can totally order G by decreeing that its positive elements are exactly the cosets kU with
k € A and v becomes a G-valuation with valuation ring A. The ideal structure of A is not
quite as nice in general as in the discrete case, but is still fairly simple: given any =,y € A
with v(x) < v(y), we have yz~—! € A, so the ideal (z) contains (y). It follows easily that
a nonzero ideal I of A is completely determined by the set v(I) of values of its nonzero
elements, and in fact consists of all elements of A whose value lies in v([), together with
0. In turn v(I) is an upper ideal of G, that is a subset of G containing y € G whenever
it contains x € G and x < y; conversely any upper ideal of G is v([) for a unique ideal I
. Thus, while A need not be a PID, every finitely generated ideal of A is principal; also,
given two ideals I, J of A we have either I C J or J C I. In homework for next week you
will characterize the prime ideals of A and will also show that A is Noetherian if and only
if it is a DVR (so that G = Z as an ordered abelian group).

Moreover, it turns out that any totally ordered abelian group G is the value group
of a valuation ring. To see this we return to an old friend from the fall quarter, in a
somewhat more general setting, namely the group algebra ZG, consisting by definition
of all finite integral combinations of elements of G (regarded as a multiplicative group),
where multiplication is defined via multiplication in G and the distributive law. Then ZG
is an integral domain, for given a nonzero element > x;g; in it with z; € Z, g; € G, then
we may assume that the z; are nonzero and g; < --- < gy,; call x1g; the lowest degree
term of x. Then the lowest degree term of a product xy is the product of the lowest degree
terms of z and y, so no product of nonzero elements can be 0. Thus ZG has a quotient
field K. Define a valuation v on ZG by declaring the value of any sum ), ;g; as above
to be g1 € G, where x1g; is its lowest degree term, and extend v to K* by decreeing that
v(a/b) = v(a)v(b)~1,a,b € ZG; then it is easy to check that v is indeed a valuation on
K with value group G. (The valuation ring of K is not ZG, however, and need not even
contain it; it consists of all fractions f with v(f) positive in G). To wrap up valuations,
we observe that if A is a subring a field K, then the integral closure A of A in K is the
intersection of all the valuation rings of K containing A; indeed, since any valuation ring
of K containing A is integrally closed, it must also contain A; and conversely, if = ¢ A,



then the ring A’ = A[z~!] does not contain z, whence ™! is a non-unit in A’ and lies in a

maximal ideal M’ of A’. Letting Q2 be an algebraic closure of K’ = A’/M’; then we get a
homomorphism from A to € by restricting the natural one defined on A’. Extending the
domain of this homomorphism to a valuation ring B D A, we see that z ¢ B, since ™!
maps to 0.

We conclude our excursion back to Atiyah-Macdonald with a brief account of the
sheaf of rings attached to the spectrum of any ring A. A basic open subset of Spec A is
the set Uy of prime ideals not containing any power of f € A; any open subset of Spec A
is the union of such sets. To Uy we attach the localization A(Uy) = An) by all powers
of f. If another basic open set U, is contained in Uy, then every prime ideal excluding ¢
also excludes all powers of f, whence the image of g must lie in the nilradical of A/(f)
and some power ¢g" of g lies in (f), so equals uf for some u € A. We thus get a map from
A(Uy) to A(Uy) in this situation sending a/f™ to au™/g™". This map depends only on
Uy and U, and is called the restriction homomorphism. If Uy = Uy, then the restriction
homomorphism is the identity map; if U D U’ D U” are all basic open sets, then the
restriction map from U to U” is the composition of the ones from U to U’ and from U’
to U”. Now if P € Spec A, then it turns out that the localized ring Ap may be viewed
as the direct limit of the rings A(Uy) as Uy runs through the basic open sets containing
P. We call the collection of rings A(Uy) a presheaf of rings; Ap is the called the stalk
of the presheaf at P. The presheaf actually turns out to be a sheaf of rings, thanks to
the following gluing property: given an element s; of each basic open set U; such that the
images of s; and s; are equal in A(U; NUj), there is a unique s € A whose image in A(U;)
is s; for all 7. A scheme is then a ringed space (a topological space equipped with a sheaf
of rings (one ring attached to each open subset), such that every point has a neighborhood
homeomorphic to the ringed space attached as above to the spectrum of some ring.



