
LECTURE 5-1

Continuing with valuation rings (Chapter 5 of Atiyah-Macdonald) we now relate gen-
eral valuation rings more tightly to the discrete ones we studied earlier. Let G be a totally
ordered additive abelian group, so that there is a subset P of G such that 0 /∈ P , for every
g ∈ G with g 6= 0 we have that exactly one of g,−g ∈ P , and finally g + h ∈ P whenever
g, h ∈ P . Define the total order ≤ on G via g ≤ h if h = g or h − g ∈ P ; one checks
immediately that this relation is reflexive, antisymmetric, and transitive. Given a field K,
a G-valuation on it, or just a valuation, is a map v : K∗ → G such that v(xy) = v(x)+v(y)
for all x, y and v(x + y) ≥ min(v(x), v(y) whenever x + y 6= 0. We call G the value group.
The corresponding valuation ring A of K is the subring consisting of all elements x with
v(x) ≥ 0, together with 0; conversely, if A is a valuation ring of K,U the group of units
in A, and v the canonical map from K∗ to the (multiplicative) group G = K∗/U , then we
can totally order G by decreeing that its positive elements are exactly the cosets kU with
k ∈ A and v becomes a G-valuation with valuation ring A. The ideal structure of A is not
quite as nice in general as in the discrete case, but is still fairly simple: given any x, y ∈ A
with v(x) ≤ v(y), we have yx−1 ∈ A, so the ideal (x) contains (y). It follows easily that
a nonzero ideal I of A is completely determined by the set v(I) of values of its nonzero
elements, and in fact consists of all elements of A whose value lies in v(I), together with
0. In turn v(I) is an upper ideal of G, that is a subset of G containing y ∈ G whenever
it contains x ∈ G and x ≤ y; conversely any upper ideal of G is v(I) for a unique ideal I
. Thus, while A need not be a PID, every finitely generated ideal of A is principal; also,
given two ideals I, J of A we have either I ⊂ J or J ⊂ I. In homework for next week you
will characterize the prime ideals of A and will also show that A is Noetherian if and only
if it is a DVR (so that G ∼= Z as an ordered abelian group).

Moreover, it turns out that any totally ordered abelian group G is the value group
of a valuation ring. To see this we return to an old friend from the fall quarter, in a
somewhat more general setting, namely the group algebra ZG, consisting by definition
of all finite integral combinations of elements of G (regarded as a multiplicative group),
where multiplication is defined via multiplication in G and the distributive law. Then ZG
is an integral domain, for given a nonzero element

∑
xigi in it with xi ∈ Z, gi ∈ G, then

we may assume that the xi are nonzero and g1 < · · · < gn; call x1g1 the lowest degree
term of x. Then the lowest degree term of a product xy is the product of the lowest degree
terms of x and y, so no product of nonzero elements can be 0. Thus ZG has a quotient
field K. Define a valuation v on ZG by declaring the value of any sum

∑
i xigi as above

to be g1 ∈ G, where x1g1 is its lowest degree term, and extend v to K∗ by decreeing that
v(a/b) = v(a)v(b)−1, a, b ∈ ZG; then it is easy to check that v is indeed a valuation on
K with value group G. (The valuation ring of K is not ZG, however, and need not even
contain it; it consists of all fractions f with v(f) positive in G). To wrap up valuations,
we observe that if A is a subring a field K, then the integral closure A of A in K is the
intersection of all the valuation rings of K containing A; indeed, since any valuation ring
of K containing A is integrally closed, it must also contain Ā; and conversely, if x /∈ A,



then the ring A′ = A[x−1] does not contain x, whence x−1 is a non-unit in A′ and lies in a
maximal ideal M ′ of A′. Letting Ω be an algebraic closure of K ′ = A′/M ′; then we get a
homomorphism from A to Ω by restricting the natural one defined on A′. Extending the
domain of this homomorphism to a valuation ring B ⊃ A, we see that x /∈ B, since x−1

maps to 0.
We conclude our excursion back to Atiyah-Macdonald with a brief account of the

sheaf of rings attached to the spectrum of any ring A. A basic open subset of Spec A is
the set Uf of prime ideals not containing any power of f ∈ A; any open subset of Spec A
is the union of such sets. To Uf we attach the localization A(Uf ) = A(fn) by all powers
of f . If another basic open set Ug is contained in Uf , then every prime ideal excluding g
also excludes all powers of f , whence the image of g must lie in the nilradical of A/(f)
and some power gn of g lies in (f), so equals uf for some u ∈ A. We thus get a map from
A(Uf ) to A(Ug) in this situation sending a/fm to aum/gmn. This map depends only on
Uf and Ug and is called the restriction homomorphism. If Uf = Ug, then the restriction
homomorphism is the identity map; if U ⊃ U ′ ⊃ U” are all basic open sets, then the
restriction map from U to U” is the composition of the ones from U to U ′ and from U ′

to U”. Now if P ∈ Spec A, then it turns out that the localized ring AP may be viewed
as the direct limit of the rings A(Uf ) as Uf runs through the basic open sets containing
P . We call the collection of rings A(Uf ) a presheaf of rings; AP is the called the stalk
of the presheaf at P . The presheaf actually turns out to be a sheaf of rings, thanks to
the following gluing property: given an element si of each basic open set Ui such that the
images of si and sj are equal in A(Ui ∩Uj), there is a unique s ∈ A whose image in A(Ui)
is si for all i. A scheme is then a ringed space (a topological space equipped with a sheaf
of rings (one ring attached to each open subset), such that every point has a neighborhood
homeomorphic to the ringed space attached as above to the spectrum of some ring.


