LECTURE 4-7

We now give the definition of primary submodule in a general context, following
Chapter 4 of Atiyah-Macdonald (including the exercises in this chapter). Let M be any
module over any ring R. Call a submodule N of N primary if every zero-divisor on M /N is
nilpotent, where x € R is (defined to be) a zero-divisor on M /N if thereisy € M/N,y # 0
with 2y = 0, while x is nilpotent if there is an integer k with z¥(M/N) = 0. By the
binomial theorem, which holds for any commutative ring, the set of nilpotent element in
R on any fixed module M’ is an ideal; if this coincides with the set of zero-divisors on
M’ this ideal is prime. We therefore more precisely call N P-primary if it is primary and
the set of zero-divisors on M/N is the prime ideal P. It is not difficult to check that if
M is finitely generated and R is Noetherian, then a P-primary submodule in this sense
is the same as a P-primary module in the earlier sense (but not in general). It is easy to
check that a finite intersection of P-primary submodules is again P-primary, so given a
submodule N that is a finite intersection NN; of primary submodules then we can combine
terms and assume that each N; is P;-primary where the P; are distinct primes. We may
further assume, omitting terms as necessary, that no N; contains the intersection of the
others. The prime ideals P; are said to belong to N; recall that the minimal primes among
the P; are called isolated and the others embedded.

Call a submodule N of M decomposable if it has a primary decomposition, i.e. it
is the intersection of finitely many primary submodules (called its primary components).
In general, submodules are not decomposable, but we have seen that any submodule of
a finitely generated module over a Noetherian ring is decomposable. Even when they
exist, primary decompositions need not be unique; but it turns out that they satisfy two
important uniqueness properties. First, given a submodule N realized as in the previous
paragraph as a finite intersection NN; where the submodule N; is P;-primary, the P; are
distinct prime ideals, and no N; contains the intersection of the others, then the set of prime
ideals P; arising in this way (both isolated and embedded ones) is uniquely determined by
N. To see this we may pass to the quotient and assume that N = 0. Then the annihilator
I(m) of m is the intersection of the annihilators I;(m) of the images of m in the quotients
M/N; and in turn the radical \/I(m) is the intersection of the radicals \/I;(m). If \/I(m)
is prime, this forces it to coincide with P; for some i; conversely any P; arises as y/I(m)
for any m chosen to lie in the intersection of the N; for j # ¢ but not in N;. Hence the F;
are exactly the prime ideals of the form \/I(m) for m € M and so are determined by M
alone; note that this result also gives us some idea of where to look for submodules N; that
could realize the submodule N as decomposable (having a finite primary decomposition),
if we do not yet know whether N is decomposable or not.

The other uniqueness result pertains to the isolated primes @1, ... ,Q; among the P;:
the primary component N; of N corresponding to any (); is uniquely determined by N.
This follows since it is easy to check that the localization Ng of any P-primary submodule
N of M by a multiplicatively closed subset S of R is 0 if S meets P, while otherwise it
is an S~!P-primary submodule of S~'M intersecting M in N. Hence by localizing N by
the complement of any isolated prime belonging to it and intersecting with M we recover
the corresponding isolated component uniquely.



The failure of the embedded components to be unique is illustrated rather graphically
by the following simple example. Let R = K[z],) be the localization of the polynomial
ring K[z| in one variable = over a field K at the complement of the prime ideal (z) and
set M = R® R/(x). Here there are just two associated primes of M, namely 0 and (z);
the isolated component of 0 in M is uniquely determined as Re, where e is a generator of
the second summand. Even if we restrict to embedded components of M that are as large
as possible, we find that the submodule generated by (1,ue) for any u € K can be taken
to be an embedded component; clearly no choice of such a component can be canonical as
one can send any choice to any other by an automorphism of R.

Turning now to ideals in R, we find that any ideal I whose radical M is maximal
in R is M-primary, for in this case the image of M in R/I is the only prime ideal and
R/I consists only of units (not in this image) and nilpotent elements in it, so that every
zero divisor is nilpotent. But in general even the powers P™ of a prime ideal P need not
be P-primary; for example, if R is the quotient K|[z,y,2]/(zy — 2?2), then the images xz
of z,2 € R generate a prime ideal P but xy = 2z?> € P? and z,y" ¢ P for any n, since
y ¢ VP2 = P. Instead the powers P" of P have P-primary components not equal to P™
in general; in the above case P? = (x) N (y, 2) is a primary decomposition with P-primary
component (). We denote the P-primary component of P* by P(™) and call it the nth
symbolic power of P.



