
LECTURE 4-5

We now return to a topic from last quarter that arose again in this week’s homework,
namely attaching finitely many prime ideals in a Noetherian ring R to a finitely generated
module M over it. This material comes from Chapter 3 of Eisenbud. Recall that last
quarter we started by looking at the annihilator Ann m of all m 6= 0 in M and we chose
such an m so that Ann m was maximal among such annihilators. Then P1 =Ann m need
not be maximal as an ideal of R, but it is always prime, for if xy ∈Ann m but x /∈Ann m,
then Ann xm contains and so must equal Ann m, whence y ∈Ann m and ym = 0, as
required. Letting M1 be the submodule of M generated by m and passing to the quotient
M/M1, we find a submodule M2 of M containing M1 such that M2/M1

∼= R/P2 with
P2 another prime ideal of R; iterating this procedure, we arrive at a chain of submodules
M1 ⊂ M2 ⊂ . . . of M , which must terminate after finitely many steps at Mn = M , since
M is Noetherian, such that the ith graded piece Mi/Mi−1 of the filtration Mi) of M takes
the form R/Pi for some prime ideal Pi of R (here M0 = 0). Neither this filtration nor
the ideals Pi are unique, in general, but we saw last quarter that if Pi is minimal among
P1, . . . , Pn, then the number of indices j with Pj = Pi is uniquely determined by M , as
the dimension of the vector space MPi

over the field (R/Pi)Pi
. (A simple example showing

that the nonminimal Pi depend on the filtration occurs if we set M = R/P, P a prime ideal
of R; then we could clearly take M0 = 0,M1 = M , but we could also let x ∈M,x 6= 0, take
M1 to be the submodule generated by x, whose annihilator is still P by primeness, and
then M1 6= M , so we would still have M2 to define; note that the annihilator of any graded
piece Mi/Mi−1 with i ≥ 2 would contain x and so properly contain P .) Call the minimal
Pi among P1, . . . , Pn the isolated primes of M and the others the embedded primes. The
terminology comes from algebraic geometry, where we study prime ideals by studying their
varieties; the variety of a larger ideal is embedded in the one for a smaller one (and so is
in some sense invisible).

Call a prime ideal P of R an associated prime of M (and denote by Ass M the set of
all such) if it is the annihilator of some element of M . We have just seen that this set is
nonempty for every M . If 0→M ′ →M →M”→ 0 is a short exact sequence, then Ass M
contains Ass M ′ and lies in the union of this set and Ass M”; to see this, observe that if
P ∈Ass M but P /∈Ass M ′, then any nonzero element of the submodule N generated by
an element m of M with annihilator P again has annihilator P , by primeness, whence the
intersection N ∩M ′ = 0 and N identifies with a submodule of M”, forcing P ∈Ass M”, as
desired. Applying this last fact repeatedly to the filtration (Mi) above, we see that Ass M
is finite and in fact lies in the set {P1, . . . , Pn} of prime ideals arising from it. Now the
embedded primes attached to M may or may not lie in Ass M , but the isolated primes Pi

always do; to see this, we look at the associated primes of the localized module MPi
which

by definition of localization consist exactly of the (localizations of) the associated primes
of M contained in Pi. By the above argument and minimality of Pi, the only candidate
for such an ideal is Pi itself; but Ass MPi

is nonempty, so Pi must occur as an associated
prime of M . Note also that the isolated primes Pi are exactly the minimal primes over the
annihilator Ann M of M itself. To prove this we first observe that the product P1 · · ·Pn

of prime ideals annihilates M , whence any prime ideal doing the same must contain one
of the isolated Pi; conversely, the annihilator of M lies in every isolated Pi, since any



x annihilating M must also annihilate the subquotient R/Pi of M . Hence the support
Supp M , consisting by definition of all primes P such that the localization MP is nonzero,
coincides with the set of primes containing Ann M , or equivalently some isolated Pi.

Now it turns out that there is a very convenient way to focus attention on particular
associated primes of a module M , corresponding to decomposing an affine variety into its
irreducible constituents. Call a submodule N of M P -primary if P is the only associated
prime of the quotient M/N . If this holds and a product xy ∈ R lies in Ann M/N) but
x /∈Ann M/N , then by passing to an element xm ∈ xM/N whose annihilator is maximal
among annihilators of nonzero elements of xM/N , we see that such an annihilator must
be P , whence yn ∈ P for some n. Thus an ideal I of ring R is P -primary as a submodule
of R if and only if it is primary in the sense defined earlier and has radical P (but not
every ideal with radical P is P -primary). Now, arguing as we have done several times
before by Noetherian induction, we see that every submodule of M is a finite intersection
of submodules that are irreducible in the sense that none of them is the intersection of
two submodules properly containing it (this has nothing to do with the usual notion of
irreducible module and pertains only to submodules of a fixed one). Now every irreducible
submodule N is primary. Otherwise, M/N would have at least two associated primes P,Q
and accordingly two submodules, one isomorphic to R/P and the other to R/Q. Since
the annihilator of every nonzero element of R/P is P and similarly for R/Q, these two
submodules intersect in 0, whence N is the intersection of two properly larger submodules,
a contradiction. We will explore primary decomposition further in subsequent lectures.


