
LECTURE 4-28

Continuing from where we left off last time, we now suppose that we have a ring
extension A ⊂ B in which A and B are both integral domains, Our next result states that
if x ∈ B is integral over an ideal I of A and A is integrally closed, then x is algebraic over
the quotient field K of A and the nonleading coefficients of its minimal (monic) polynomial
p over K all lie in

√
I. Indeed, it is clear that x is algebraic over K. Let L be a finite

extension of K containing all the conjugates of x (the other roots of p). Each of these
conjugates xi is also integral over I and the coefficients of p are polynomials in the xi, so
they too are integral over I, whence they too lie in

√
I by the closedness of A. Now we can

show that the Going-Down property holds for A and B in this situation: given Q1 ∈ Spec B
with contraction P1 ∈Spec A and P2 ∈Spec A,P2 ⊂ P1, there is Q2 ∈Spec B,Q2 ⊂ Q1

such that Q2 contracts to P2. To prove this it is enough to show that BQ1
P2 ∩ A = P2.

If x = y/s ∈ BQ1
P2 then y is integral over P2, whence its minimal polynomial over K,

the quotient field of A, has all nonleading coefficients ui in P2. If in addition x ∈ A,
then s = yx−1, x−1 ∈ K, so the minimal polynomial of s over K has typical nonleading
coefficient vi = ui/x

i, whence xivi = ui ∈ P2. But s is integral over A, regarded as an
ideal of itself, so each vi ∈ A. If x /∈ P2, then each vi ∈ P2 and a suitable power of s lies
in BP2 ⊂ BP1 ⊂ Q1, forcing s ∈ Q1, a contradiction. Hence x ∈ P2, as desired.

A ring extension A ⊂ B with B Noetherian has the going-up property if and only if
the map Spec B → Spec A is closed (in the sense that it takes closed sets to closed sets),
as you will show in homework. For general A and B, if this last map is open, then B has
the going-down property over A. An example is given in Figure 10.4 in §10.2 of Eisenbud
of a homomorphism not satisfying the going-down property.

We now turn to valuation rings, which generalize the discrete valuation rings we
studied last quarter. Let A be an integral domain with quotient field K. We call A a
valuation ring of K if for each x ∈ K,x 6= 0, either x ∈ A or x−1 ∈ A (or both). This
condition says that A occupies a very large fraction of K. Note that it holds, for example,
for the p-adic integers Zp, for given any power series

∑∞
k=−n aip

i in Qp but not Zp, we must
have n > 0 (it must begin with a strictly negative power of p), whence its inverse begins
with a positive power of p and lies in Zp. Any valuation ring A is local, for if M denotes
the set of x ∈ A with x−1 /∈ A or x = 0, then any x ∈ M has ax ∈ M for all a ∈ A, lest
x−1, as a multiple of (ax)−1, lie in A; if x, y ∈M with x, y nonzero, then either xy−1 ∈ A
or yx−1 ∈ A, whence in both cases x + y ∈ M , since x + y = (1 + xy−1)y = (1 + yx−1)x.
Also A is integrally closed, for if x ∈ K is integral over A, so that xn+a1x

n−1+. . .+an = 0
with the ai ∈ A, then either x ∈ A or x = −(a1 + a2x

−1 + . . . + anx
1−n) ∈ A. We can

construct valuation rings via Zorn’s Lemma, as follows: given the field K, let Ω be an
algebraically closed field. Let Σ consist of all pairs (B, f) where B is a subring of K and
f a homomorphism from B into Ω. We partially order such pairs by inclusion. By Zorn’s
Lemma Σ has a maximal element, say (B, g). We claim that B is a valuation ring of K
and ker g its maximal ideal. First note that g(B) is a subring of a field and therefore an
integral domain, so M = ker g is prime. We can extend g to a homomorphism from BM



to Ω since g(x) 6= 0 for x /∈ M ; then maximality forces BM = B, whence B is local with
maximal ideal M .

Now let x be a nonzero element of K. Let B[x] be the subring of K generated by B and
x and M [x] the extension of M in B[x]. Then either M [x] 6= B[x] or M [x−1] 6= B[x−1], for
otherwise we would have equations u0 + . . .+umxm = v0 + . . .+ vnx

−n = 1 for ui, vi ∈M ,
in which we may suppose that the degrees m,n are as small as possible. Supposing for
definiteness that m ≥ n, multiply the second equation by xn, to get (1−v0)xn = v1x

n−1 +
. . . + vn. Since v0 ∈ M, 1 − v0 is a unit, and we may write xn as a combination of lower
nonnegative powers of x. Multiplying by xm−n and plugging into the first equation, we
get another equation with a lesser value of m, contradicting the way it was chosen.

We can finally show that B is indeed a valuation ring of K. Let x ∈ K,x 6= 0; we
must show that x ∈ B or x−1 ∈ B. By the above paragraph, we may assume that M [x] is
not the unit ideal of B′ = B[x], whence M [x] is contained in a maximal ideal M ′, whose
contraction in B must be M , so that we get an embedding k = B/M ⊂ k′ = B′/M ′.
Since the image of x in k′ generates it as a ring, k′ must be finite algebraic over k. By
the algebraic closure of Ω, the embedding k ⊂ Ω extends to one from k′ into Ω, whence
maximality of B forces x ∈ B, as desired. Thus K always admits at least one valuation
ring, though for some K (e.g. finite fields) the only possibility for this ring is K itself. If
we can choose Ω and a subring A of K with a non-injective map from A into Ω, however,
then we can find a valuation ring of K different from K itself. More generally, given any
integral domain A with a prime ideal P 6= 0, then it turns out that any subring A′ of the
quotient field K of A maximal subject to the condition that PA′ 6= A′ turns out to be a
valuation ring of K different from K.


