LECTURE 4-28

Continuing from where we left off last time, we now suppose that we have a ring extension $A \subset B$ in which A and B are both integral domains, Our next result states that if $x \in B$ is integral over an ideal I of A and A is integrally closed, then x is algebraic over the quotient field K of A and the nonleading coefficients of its minimal (monic) polynomial p over K all lie in \sqrt{I}. Indeed, it is clear that x is algebraic over K. Let L be a finite extension of K containing all the conjugates of x (the other roots of p). Each of these conjugates x_{i} is also integral over I and the coefficients of p are polynomials in the x_{i}, so they too are integral over I, whence they too lie in \sqrt{I} by the closedness of A. Now we can show that the Going-Down property holds for A and B in this situation: given $Q_{1} \in \operatorname{Spec} B$ with contraction $P_{1} \in \operatorname{Spec} A$ and $P_{2} \in \operatorname{Spec} A, P_{2} \subset P_{1}$, there is $Q_{2} \in \operatorname{Spec} B, Q_{2} \subset Q_{1}$ such that Q_{2} contracts to P_{2}. To prove this it is enough to show that $B_{Q_{1}} P_{2} \cap A=P_{2}$. If $x=y / s \in B_{Q_{1}} P_{2}$ then y is integral over P_{2}, whence its minimal polynomial over K, the quotient field of A, has all nonleading coefficients u_{i} in P_{2}. If in addition $x \in A$, then $s=y x^{-1}, x^{-1} \in K$, so the minimal polynomial of s over K has typical nonleading coefficient $v_{i}=u_{i} / x^{i}$, whence $x^{i} v_{i}=u_{i} \in P_{2}$. But s is integral over A, regarded as an ideal of itself, so each $v_{i} \in A$. If $x \notin P_{2}$, then each $v_{i} \in P_{2}$ and a suitable power of s lies in $B P_{2} \subset B P_{1} \subset Q_{1}$, forcing $s \in Q_{1}$, a contradiction. Hence $x \in P_{2}$, as desired.

A ring extension $A \subset B$ with B Noetherian has the going-up property if and only if the map Spec $B \rightarrow \operatorname{Spec} A$ is closed (in the sense that it takes closed sets to closed sets), as you will show in homework. For general A and B, if this last map is open, then B has the going-down property over A. An example is given in Figure 10.4 in $\S 10.2$ of Eisenbud of a homomorphism not satisfying the going-down property.

We now turn to valuation rings, which generalize the discrete valuation rings we studied last quarter. Let A be an integral domain with quotient field K. We call A a valuation ring of K if for each $x \in K, x \neq 0$, either $x \in A$ or $x^{-1} \in A$ (or both). This condition says that A occupies a very large fraction of K. Note that it holds, for example, for the p-adic integers \mathbb{Z}_{p}, for given any power series $\sum_{k=-n}^{\infty} a_{i} p^{i}$ in \mathbb{Q}_{p} but not \mathbb{Z}_{p}, we must have $n>0$ (it must begin with a strictly negative power of p), whence its inverse begins with a positive power of p and lies in \mathbb{Z}_{p}. Any valuation ring A is local, for if M denotes the set of $x \in A$ with $x^{-1} \notin A$ or $x=0$, then any $x \in M$ has $a x \in M$ for all $a \in A$, lest x^{-1}, as a multiple of $(a x)^{-1}$, lie in A; if $x, y \in M$ with x, y nonzero, then either $x y^{-1} \in A$ or $y x^{-1} \in A$, whence in both cases $x+y \in M$, since $x+y=\left(1+x y^{-1}\right) y=\left(1+y x^{-1}\right) x$. Also A is integrally closed, for if $x \in K$ is integral over A, so that $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ with the $a_{i} \in A$, then either $x \in A$ or $x=-\left(a_{1}+a_{2} x^{-1}+\ldots+a_{n} x^{1-n}\right) \in A$. We can construct valuation rings via Zorn's Lemma, as follows: given the field K, let Ω be an algebraically closed field. Let Σ consist of all pairs (B, f) where B is a subring of K and f a homomorphism from B into Ω. We partially order such pairs by inclusion. By Zorn's Lemma Σ has a maximal element, say (B, g). We claim that B is a valuation ring of K and ker g its maximal ideal. First note that $g(B)$ is a subring of a field and therefore an integral domain, so $M=\operatorname{ker} g$ is prime. We can extend g to a homomorphism from B_{M}
to Ω since $g(x) \neq 0$ for $x \notin M$; then maximality forces $B_{M}=B$, whence B is local with maximal ideal M.

Now let x be a nonzero element of K. Let $B[x]$ be the subring of K generated by B and x and $M[x]$ the extension of M in $B[x]$. Then either $M[x] \neq B[x]$ or $M\left[x^{-1}\right] \neq B\left[x^{-1}\right]$, for otherwise we would have equations $u_{0}+\ldots+u_{m} x^{m}=v_{0}+\ldots+v_{n} x^{-n}=1$ for $u_{i}, v_{i} \in M$, in which we may suppose that the degrees m, n are as small as possible. Supposing for definiteness that $m \geq n$, multiply the second equation by x^{n}, to get $\left(1-v_{0}\right) x^{n}=v_{1} x^{n-1}+$ $\ldots+v_{n}$. Since $v_{0} \in M, 1-v_{0}$ is a unit, and we may write x^{n} as a combination of lower nonnegative powers of x. Multiplying by x^{m-n} and plugging into the first equation, we get another equation with a lesser value of m, contradicting the way it was chosen.

We can finally show that B is indeed a valuation ring of K. Let $x \in K, x \neq 0$; we must show that $x \in B$ or $x^{-1} \in B$. By the above paragraph, we may assume that $M[x]$ is not the unit ideal of $B^{\prime}=B[x]$, whence $M[x]$ is contained in a maximal ideal M^{\prime}, whose contraction in B must be M, so that we get an embedding $k=B / M \subset k^{\prime}=B^{\prime} / M^{\prime}$. Since the image of x in k^{\prime} generates it as a ring, k^{\prime} must be finite algebraic over k. By the algebraic closure of Ω, the embedding $k \subset \Omega$ extends to one from k^{\prime} into Ω, whence maximality of B forces $x \in B$, as desired. Thus K always admits at least one valuation ring, though for some K (e.g. finite fields) the only possibility for this ring is K itself. If we can choose Ω and a subring A of K with a non-injective map from A into Ω, however, then we can find a valuation ring of K different from K itself. More generally, given any integral domain A with a prime ideal $P \neq 0$, then it turns out that any subring A^{\prime} of the quotient field K of A maximal subject to the condition that $P A^{\prime} \neq A^{\prime}$ turns out to be a valuation ring of K different from K.

