LECTURE 4-26

We continue with Atiyah-Macdonald, now focussing on Chapter 5, which deals with
integrality of one ring over another. Let A, B be rings with A C B. We have seen that
there is a continuous map Spec B — Spec A given by contraction (intersection with A).
Thus we have the reverse of the situation we had in algebraic geometry last quarter; there
we started with a morphism V' — W of varieties and argued that it gave rise to an algebra
homomorphism K[W] — K[V], which in fact determined the morphism uniquely. Now we
cannot expect an arbitrary continuous map from Spec B to Spec A to arise from a ring
homomorphism, or even to characterize the maps so arising, but we can hope to translate
properties of B as an A-algebra to relations between their prime spectra.

We say that B has the lying-over property (with respect to A) if the map Spec B —
Spec A is surjective; it has the going-up property if whenever )1 € Spec B contracts to
P, €Spec A and P, €Spec A, P, D Pj, then there is ()2 € Spec B containing ()1 and
contracting to P,. It has the going-down property if given ()2 € Spec B with contraction
P, eSpec A and P; € Spec A, P, C P, there is Q1 C ()2, Q1 € Spec B contracting to P;.
For example, if A = Z, B = Q, then B does not have the lying-over or going-up properties
with respect to A, for the only prime ideal 0 of B contracts to 0 and no ideal of B contracts
to any larger prime in A; but B does (trivially) have the going-down property with respect
to A, simply because no prime ideal of A is properly contained in 0. If A = Z, B = Z][i],
then B has all three properties: recall that the prime ideals in B take the form (p) where
p is a prime number congruent to 3 mod 4, together with the principal ideals (a + bi)
such that a? + > = p is prime in Z and congruent to 1 or 2 mod 4. Here the map
Spec B — Spec A is two-to-one half the time and one-to-one the other half (by contrast,
in algebraic geometry, a finite map V' — W between affine varieties V, W is generically
k-to-one for some constant k).

We saw last quarter that if B is integral over A (in the sense that every z € B satisfies
an integral dependence, that is, a monic polynomial with coefficients in A), then B satisfies
the lying-over property; indeed, by passing to a quotient of A it is enough to show that
some element of Spec B contracts to 0, but this follows immediately from a lemma proved
last time, since 0°¢ = 0. In fact, we have a stronger property: there are no inclusions
among prime ideals (Q in B contracting to a fixed prime P of A; this follows by localizing,
since an easy argument from last quarter shows that if B is integral over A, then B is a
field if and only if A is. (Last quarter, in the algebro-geometric setting we had the extra
property that B was finitely generated as an A-module, which further implies that only
finitely many prime ideals in B contract to a fixed one in A.)

We saw last time that if B is flat over A then it satisfies the going-down property;
if in addition it is faithfully flat then it satisfies the going-up and lying-over properties.
We now exhibit a different condition which also implies the going-down property. For any
ring extension A C B, the set of elements of B integral over A is a subring containing
A called its integral closure. We say that A is integrally closed in B if it equals its own
integral closure, and integrally closed (without qualification) if A is an integral domain



and is integrally closed in its quotient field; of course in this case it may still admit proper
integral extensions. For example, Z is integrally closed in QQ, as we stated and used in the
fall, for given a dependence (r/s)"+a,_1(r/s)" 1 +...4ag = 0 with the a;,r, s all integral
and /s in lowest terms, we can multiply this equation by s™ and deduce a contradiction
if s has a prime factor. The same argument shows that any unique factorization domain
is integrally closed. Returning to any ring extension A C B, let S be a multiplicatively
closed subset of A. If = € B is integral over A and s € S, then z/s is integral over Ag,
as one sees by dividing a dependence for z by a suitable power s™; conversely if b/s is
integral over Ag, then multiplying a dependence by (st)™ a suitable power of st, where t
is the product of the denominators in the dependence, we get a dependence for bt over A.
Hence the integral closure of Ag in Bg is C's, where C' is the integral closure of A in B. It
follows easily that a domain A is integrally closed if and only if Ap is integrally closed for
all prime ideals P, or Ay is integrally closed for all maximal ideals M.

We conclude by extending the notion of integrality and integral closure to ideals.
Given an extension A C B and an ideal I of A, we say that x € B is integral over I if
it satisfies a dependence with all nonleading coefficients in I (as one would expect). The
integral closure of I in B is the set of elements integral over I. We relate this to the integral
closure of A by the following lemma: let C' be the integral closure of A in B and I and
ideal of A. Then the integral closure of I in B is the radical \/I¢ of the extension I¢ of T
in C'. To see this, let x € B be integral over I; then the dependence shows at once that
z™ € I¢ for some n, so that z € v/I¢. Conversely, if € VI¢ then 2" = > a;x; for some
a; € I,z; € C. Integrality of the x; over A shows that the subring M = Alzy,...,z,]
generated by A and the z; is finitely generated as an A-module, and "M C IM. By our
proof of the Cayley-Hamilton Theorem again, ™ is integral over I, whence so is x.



