
LECTURE 4-26

We continue with Atiyah-Macdonald, now focussing on Chapter 5, which deals with
integrality of one ring over another. Let A,B be rings with A ⊂ B. We have seen that
there is a continuous map Spec B →Spec A given by contraction (intersection with A).
Thus we have the reverse of the situation we had in algebraic geometry last quarter; there
we started with a morphism V →W of varieties and argued that it gave rise to an algebra
homomorphism K[W ]→ K[V ], which in fact determined the morphism uniquely. Now we
cannot expect an arbitrary continuous map from Spec B to Spec A to arise from a ring
homomorphism, or even to characterize the maps so arising, but we can hope to translate
properties of B as an A-algebra to relations between their prime spectra.

We say that B has the lying-over property (with respect to A) if the map Spec B →
Spec A is surjective; it has the going-up property if whenever Q1 ∈Spec B contracts to
P1 ∈Spec A and P2 ∈Spec A,P2 ⊃ P1, then there is Q2 ∈Spec B containing Q1 and
contracting to P2. It has the going-down property if given Q2 ∈Spec B with contraction
P2 ∈Spec A and P1 ∈Spec A,P1 ⊂ P2, there is Q1 ⊂ Q2, Q1 ∈Spec B contracting to P1.
For example, if A = Z, B = Q, then B does not have the lying-over or going-up properties
with respect to A, for the only prime ideal 0 of B contracts to 0 and no ideal of B contracts
to any larger prime in A; but B does (trivially) have the going-down property with respect
to A, simply because no prime ideal of A is properly contained in 0. If A = Z, B = Z[i],
then B has all three properties: recall that the prime ideals in B take the form (p) where
p is a prime number congruent to 3 mod 4, together with the principal ideals (a + bi)
such that a2 + b2 = p is prime in Z and congruent to 1 or 2 mod 4. Here the map
Spec B →Spec A is two-to-one half the time and one-to-one the other half (by contrast,
in algebraic geometry, a finite map V → W between affine varieties V,W is generically
k-to-one for some constant k).

We saw last quarter that if B is integral over A (in the sense that every x ∈ B satisfies
an integral dependence, that is, a monic polynomial with coefficients in A), then B satisfies
the lying-over property; indeed, by passing to a quotient of A it is enough to show that
some element of Spec B contracts to 0, but this follows immediately from a lemma proved
last time, since 0ec = 0. In fact, we have a stronger property: there are no inclusions
among prime ideals Q in B contracting to a fixed prime P of A; this follows by localizing,
since an easy argument from last quarter shows that if B is integral over A, then B is a
field if and only if A is. (Last quarter, in the algebro-geometric setting we had the extra
property that B was finitely generated as an A-module, which further implies that only
finitely many prime ideals in B contract to a fixed one in A.)

We saw last time that if B is flat over A then it satisfies the going-down property;
if in addition it is faithfully flat then it satisfies the going-up and lying-over properties.
We now exhibit a different condition which also implies the going-down property. For any
ring extension A ⊂ B, the set of elements of B integral over A is a subring containing
A called its integral closure. We say that A is integrally closed in B if it equals its own
integral closure, and integrally closed (without qualification) if A is an integral domain



and is integrally closed in its quotient field; of course in this case it may still admit proper
integral extensions. For example, Z is integrally closed in Q, as we stated and used in the
fall, for given a dependence (r/s)n+an−1(r/s)n−1+ . . .+a0 = 0 with the ai, r, s all integral
and r/s in lowest terms, we can multiply this equation by sn and deduce a contradiction
if s has a prime factor. The same argument shows that any unique factorization domain
is integrally closed. Returning to any ring extension A ⊂ B, let S be a multiplicatively
closed subset of A. If x ∈ B is integral over A and s ∈ S, then x/s is integral over AS ,
as one sees by dividing a dependence for x by a suitable power sn; conversely if b/s is
integral over AS , then multiplying a dependence by (st)n a suitable power of st, where t
is the product of the denominators in the dependence, we get a dependence for bt over A.
Hence the integral closure of AS in BS is CS , where C is the integral closure of A in B. It
follows easily that a domain A is integrally closed if and only if AP is integrally closed for
all prime ideals P , or AM is integrally closed for all maximal ideals M .

We conclude by extending the notion of integrality and integral closure to ideals.
Given an extension A ⊂ B and an ideal I of A, we say that x ∈ B is integral over I if
it satisfies a dependence with all nonleading coefficients in I (as one would expect). The
integral closure of I in B is the set of elements integral over I. We relate this to the integral
closure of A by the following lemma: let C be the integral closure of A in B and I and
ideal of A. Then the integral closure of I in B is the radical

√
Ie of the extension Ie of I

in C. To see this, let x ∈ B be integral over I; then the dependence shows at once that
xn ∈ Ie for some n, so that x ∈

√
Ie. Conversely, if x ∈

√
Ie then xn =

∑
aixi for some

ai ∈ I, xi ∈ C. Integrality of the xi over A shows that the subring M = A[x1, . . . , xn]
generated by A and the xi is finitely generated as an A-module, and xnM ⊂ IM . By our
proof of the Cayley-Hamilton Theorem again, xn is integral over I, whence so is x.


