LECTURE 4-19

Cotinuing with Chapter 6 of Eisenbud, we now investigate flatness in general. To do this we need to study tensor products in more detail. Let M, N be R-modules with N generated by a set $\left\{n_{i}\right\}$ of elements. We know that every element of $M \otimes N$ may be written as a finite sum $\sum_{i} m_{i} \otimes n_{i}$ with $m_{i} \in M$. Then we claim that such a sum is 0 if and only if there are elements m_{j}^{\prime} in M and elements $a_{i j} \in R$ such that $\sum_{j} a_{i j} m_{j}^{\prime}=m_{i}$ for all i and $\sum_{i} a_{i j} n_{i}=0$ for all j. Indeed, if elements $a_{i j}$ with these properties exist, then $\sum_{i} m_{i} \otimes n_{i}=\sum_{i}\left(\sum_{j} a_{i j} m_{j}^{\prime}\right) \otimes n_{i}=\sum_{j} m_{j}^{\prime}\left(\sum_{i} a_{i j} n_{i}\right)=0$. For the converse, suppose first that N is free and the n_{i} form a basis; then the result is immediate since $M \otimes N$ is isomorphic to a direct sum of copies of M, one for each n_{i}, and the sum $\sum_{i} m_{i} \otimes n_{i}$ corresponds to the tuple ($m_{1}, m_{2} \ldots$) in this isomorphism. In general, there are free modules F, G over R, an exact sequence $F \rightarrow G \rightarrow N \rightarrow 0$, and elements $g_{i} \in G$ mapping to n_{i} for all i. Then $\sum_{i} m_{i} \otimes g_{i}$ goes to 0 in this sequence, whence $\sum_{i} m_{i} \otimes g_{i}=\sum_{j} m_{j}^{\prime} \otimes y_{j}$ with y_{j} in the image of F (so going to 0 in G). Writing each y_{j} as a combination $\sum_{i} a_{i j} g_{j}$ of basis elements g_{j} and applying the argument above to the difference $\sum_{i} m_{i} \otimes g_{i}=\sum_{j} a_{i j} \otimes g_{i}$ we deduce that $m_{i}=\sum_{j} a_{i j} m_{j}^{\prime}$ while y_{j} goes to $\sum_{i} a_{i j} n_{i}=0$, as required. From this we get the equational criterion for flatness: an R-module M is flat if and only if for every relation $\sum_{i} n_{i} m_{i}=0$ with $n_{i} \in R, m_{i} \in M$ there are elements $m_{j}^{\prime} \in M$ and $a_{i j} \in R$ with $\sum_{j} a_{i j} m_{j}^{\prime}=m_{i}$ for all i and $\sum_{i} a_{i j} n_{i}=0$ for all i; this follows because the image of $\sum_{i} n_{i} \otimes n_{i}$ in the tensor product $I \otimes M$ of an ideal I of R and M is 0 under the multiplication map if and ony if $\sum_{i} n_{i} m_{i}=0$.

We can express this last condition by a commutative diagram. An R-module M is flat if and only if for every map β from a finitely generated free module F to M and for every submodule K of $\operatorname{ker} \beta$ generated by one element, there is a free module G, a map $\gamma: F \rightarrow G$, and a map $\pi: G \rightarrow M$ such that $\pi \gamma=\beta$ and $K \subset \operatorname{ker} \gamma$. The same holds for a submodule K generated by finitely many elements. Finally, a finitely presented module is flat if and only if it is a summand of a free module, or equivalently it is projective. Indeed, an element f in the kernel of a map from a free module F to M is a relation among the images m_{j} of the basis elements of F; the elements m_{j}^{\prime} of the Equational Criterion for Flatness correspond to a map from another free module G taking teh generators of G to the m_{j}^{\prime}. A matrix with entries $a_{i j}$ such that $\sum_{j} a_{i j} m_{j}^{\prime}=0$ corresponds to a map γ making the digram commute. The condition that $\sum_{i} a_{i j} n_{i}=0$ in R for all j then says that $\gamma(f)=0$, as required. If the map γ exists with kernel containing one element of K, then composing it with other maps γ^{\prime} from G to itself killing other elements lying in the kernel of β and thus also the kernel of the composition $\pi \gamma$, we arrive at a new γ with the required properties. Finally, if M is finitely presented and flat then there is a surjection $\beta: F \rightarrow M$ from a finitely generated free module F to M whose kernel K is finitely generated. Letting γ, π be as above, so that K lies in the kernel of γ, we find that the image of γ is sent isomorphically to M by π, so that π splits and M is a summand of G, as desired.

As another corollary, let k be a field, $R=k[t]$ the polynomial ring in one variable over k, and let S be a Noetherian ring flat over R. If the fiber $S / t S$ over (t) is a domain, and U is the set of elements of the form $1-t s$ for $s \in S$, then the localization S_{U} of S by U is a domain. To prove this we may replace S by S_{U} and assume at the outset and assume
that all elements $1-t s$ are already units in S. Let I, J be ideals of S with $I J=0$; we must show that I or J is 0 . Enlarging I and J as necessary, we may assume that each is the annihilator of the other. Since $I J \equiv 0 \bmod (t)$ and $S /(t)$ is a domain we may assume that $J \subset(t)$. Then $J=J^{\prime} t$, where $J^{\prime}=(J: t)=\{x \in S: x t \in J\}$. Since t is not a zero divisor in R and $I J^{\prime} t=0$, we know by the last lecture that $I J^{\prime}=0$, whence $J^{\prime} \subset J$ and $J=J t$. By a corollary to the Cayley-Hamilton Theorem, we get $s \in S$ with $(1-s t) J=0$, so $J=0$, as desired.

Unfortunately one cannot avoid localization completely in the setting of the above paragraph; if $R=k[t], S=k[x, t] \times k\left[x, x^{-1}\right]$. The fiber over the maximal ideal $(t-a)$ for $a \in k$ is $S /(t-a) S$, which is a domain for $a=0$ since $t k\left[t, t^{-1}\right]=k\left[t, t^{-1}\right.$, but not for $a \neq 0$, and S is not a domain either. We can avoid difficulties of this sort by working with graded rings.

