
LECTURE 4-19

Cotinuing with Chapter 6 of Eisenbud, we now investigate flatness in general. To
do this we need to study tensor products in more detail. Let M,N be R-modules with
N generated by a set {ni} of elements. We know that every element of M ⊗ N may be
written as a finite sum

∑
imi ⊗ ni with mi ∈ M . Then we claim that such a sum is 0 if

and only if there are elements m′j in M and elements aij ∈ R such that
∑

j aijm
′
j = mi

for all i and
∑

i aijni = 0 for all j. Indeed, if elements aij with these properties exist,
then

∑
imi⊗ni =

∑
i(
∑

j aijm
′
j)⊗ni =

∑
j m
′
j(
∑

i aijni) = 0. For the converse, suppose
first that N is free and the ni form a basis; then the result is immediate since M ⊗ N
is isomorphic to a direct sum of copies of M , one for each ni, and the sum

∑
imi ⊗ ni

corresponds to the tuple (m1, ,m2. . . . ) in this isomorphism. In general, there are free
modules F,G over R, an exact sequence F → G→ N → 0, and elements gi ∈ G mapping to
ni for all i. Then

∑
imi⊗gi goes to 0 in this sequence, whence

∑
imi⊗gi =

∑
j m
′
j⊗yj with

yj in the image of F (so going to 0 in G). Writing each yj as a combination
∑

i aijgj of basis
elements gj and applying the argument above to the difference

∑
imi ⊗ gi =

∑
j aij ⊗ gi

we deduce that mi =
∑

j aijm
′
j while yj goes to

∑
i aijni = 0, as required. From this we

get the equational criterion for flatness: an R-module M is flat if and only if for every
relation

∑
i nimi = 0 with ni ∈ R,mi ∈ M there are elements m′j ∈ M and aij ∈ R

with
∑

j aijm
′
j = mi for all i and

∑
i aijni = 0 for all i; this follows because the image

of
∑

i ni ⊗ ni in the tensor product I ⊗ M of an ideal I of R and M is 0 under the
multiplication map if and ony if

∑
i nimi = 0.

We can express this last condition by a commutative diagram. An R-module M is
flat if and only if for every map β from a finitely generated free module F to M and for
every submodule K of kerβ generated by one element, there is a free module G, a map
γ : F → G, and a map π : G→M such that πγ = β and K ⊂ ker γ. The same holds for a
submodule K generated by finitely many elements. Finally, a finitely presented module is
flat if and only if it is a summand of a free module, or equivalently it is projective. Indeed,
an element f in the kernel of a map from a free module F to M is a relation among
the images mj of the basis elements of F ; the elements m′j of the Equational Criterion
for Flatness correspond to a map from another free module G taking teh generators of G
to the m′j . A matrix with entries aij such that

∑
j aijm

′
j = 0 corresponds to a map γ

making the digram commute. The condition that
∑

i aijni = 0 in R for all j then says
that γ(f) = 0, as required. If the map γ exists with kernel containing one element of K,
then composing it with other maps γ′ from G to itself killing other elements lying in the
kernel of β and thus also the kernel of the composition πγ, we arrive at a new γ with the
required properties. Finally, if M is finitely presented and flat then there is a surjection
β : F → M from a finitely generated free module F to M whose kernel K is finitely
generated. Letting γ, π be as above, so that K lies in the kernel of γ, we find that the
image of γ is sent isomorphically to M by π, so that π splits and M is a summand of G,
as desired.

As another corollary, let k be a field, R = k[t] the polynomial ring in one variable over
k, and let S be a Noetherian ring flat over R. If the fiber S/tS over (t) is a domain, and
U is the set of elements of the form 1 − ts for s ∈ S, then the localization SU of S by U
is a domain. To prove this we may replace S by SU and assume at the outset and assume



that all elements 1 − ts are already units in S. Let I, J be ideals of S with IJ = 0; we
must show that I or J is 0. Enlarging I and J as necessary, we may assume that each is
the annihilator of the other. Since IJ ≡ 0 mod (t) and S/(t) is a domain we may assume
that J ⊂ (t). Then J = J ′t, where J ′ = (J : t) = {x ∈ S : xt ∈ J}. Since t is not a zero
divisor in R and IJ ′t = 0, we know by the last lecture that IJ ′ = 0, whence J ′ ⊂ J and
J = Jt. By a corollary to the Cayley-Hamilton Theorem, we get s ∈ S with (1− st)J = 0,
so J = 0, as desired.

Unfortunately one cannot avoid localization completely in the setting of the above
paragraph; if R = k[t], S = k[x, t] × k[x, x−1]. The fiber over the maximal ideal (t − a)
for a ∈ k is S/(t− a)S, which is a domain for a = 0 since tk[t, t−1] = k[t, t−1, but not for
a 6= 0, and S is not a domain either. We can avoid difficulties of this sort by working with
graded rings.


