LECTURE 4-19

Cotinuing with Chapter 6 of Eisenbud, we now investigate flatness in general. To do this we need to study tensor products in more detail. Let M, N be R-modules with N generated by a set $\{n_i\}$ of elements. We know that every element of $M \otimes N$ may be written as a finite sum $\sum_{i} m_i \otimes n_i$ with $m_i \in M$. Then we claim that such a sum is 0 if and only if there are elements m'_j in M and elements $a_{ij} \in R$ such that $\sum_j a_{ij}m'_j = m_i$ for all i and $\sum_{i} a_{ij} n_i = 0$ for all j. Indeed, if elements a_{ij} with these properties exist, then $\sum_{i} m_i \otimes n_i = \sum_{i} (\sum_{j} a_{ij} m'_j) \otimes n_i = \sum_{j} m'_j (\sum_{i} a_{ij} n_i) = 0$. For the converse, suppose first that N is free and the n_i form a basis; then the result is immediate since $M \otimes N$ is isomorphic to a direct sum of copies of M, one for each n_i , and the sum $\sum_i m_i \otimes n_i$ corresponds to the tuple $(m_1, m_2, ...)$ in this isomorphism. In general, there are free modules F, G over R, an exact sequence $F \to G \to N \to 0$, and elements $g_i \in G$ mapping to n_i for all *i*. Then $\sum_i m_i \otimes g_i$ goes to 0 in this sequence, whence $\sum_i m_i \otimes g_i = \sum_j m'_j \otimes y_j$ with y_j in the image of F (so going to 0 in G). Writing each y_j as a combination $\sum_i a_{ij} g_j$ of basis elements g_j and applying the argument above to the difference $\sum_i m_i \otimes g_i = \sum_j a_{ij} \otimes g_i$ we deduce that $m_i = \sum_j a_{ij} m'_j$ while y_j goes to $\sum_i a_{ij} n_i = 0$, as required. From this we get the equational criterion for flatness: an R-module M is flat if and only if for every relation $\sum_{i} n_i m_i = 0$ with $n_i \in R, m_i \in M$ there are elements $m'_j \in M$ and $a_{ij} \in R$ with $\sum_{j} a_{ij} m'_j = m_i$ for all i and $\sum_{i} a_{ij} n_i = 0$ for all i; this follows because the image of $\sum_i n_i \otimes n_i$ in the tensor product $I \otimes M$ of an ideal I of R and M is 0 under the multiplication map if and ony if $\sum_{i} n_i m_i = 0$.

We can express this last condition by a commutative diagram. An R-module M is flat if and only if for every map β from a finitely generated free module F to M and for every submodule K of ker β generated by one element, there is a free module G, a map $\gamma: F \to G$, and a map $\pi: G \to M$ such that $\pi \gamma = \beta$ and $K \subset \ker \gamma$. The same holds for a submodule K generated by finitely many elements. Finally, a finitely presented module is flat if and only if it is a summand of a free module, or equivalently it is projective. Indeed, an element f in the kernel of a map from a free module F to M is a relation among the images m_i of the basis elements of F; the elements m'_i of the Equational Criterion for Flatness correspond to a map from another free module G taking the generators of Gto the m'_j . A matrix with entries a_{ij} such that $\sum_j a_{ij}m'_j = 0$ corresponds to a map γ making the digram commute. The condition that $\sum_i a_{ij}n_i = 0$ in R for all j then says that $\gamma(f) = 0$, as required. If the map γ exists with kernel containing one element of K. then composing it with other maps γ' from G to itself killing other elements lying in the kernel of β and thus also the kernel of the composition $\pi\gamma$, we arrive at a new γ with the required properties. Finally, if M is finitely presented and flat then there is a surjection $\beta: F \to M$ from a finitely generated free module F to M whose kernel K is finitely generated. Letting γ, π be as above, so that K lies in the kernel of γ , we find that the image of γ is sent isomorphically to M by π , so that π splits and M is a summand of G, as desired.

As another corollary, let k be a field, R = k[t] the polynomial ring in one variable over k, and let S be a Noetherian ring flat over R. If the fiber S/tS over (t) is a domain, and U is the set of elements of the form 1 - ts for $s \in S$, then the localization S_U of S by U is a domain. To prove this we may replace S by S_U and assume at the outset and assume

that all elements 1 - ts are already units in S. Let I, J be ideals of S with IJ = 0; we must show that I or J is 0. Enlarging I and J as necessary, we may assume that each is the annihilator of the other. Since $IJ \equiv 0 \mod (t)$ and S/(t) is a domain we may assume that $J \subset (t)$. Then J = J't, where $J' = (J : t) = \{x \in S : xt \in J\}$. Since t is not a zero divisor in R and IJ't = 0, we know by the last lecture that IJ' = 0, whence $J' \subset J$ and J = Jt. By a corollary to the Cayley-Hamilton Theorem, we get $s \in S$ with (1 - st)J = 0, so J = 0, as desired.

Unfortunately one cannot avoid localization completely in the setting of the above paragraph; if $R = k[t], S = k[x,t] \times k[x,x^{-1}]$. The fiber over the maximal ideal (t-a) for $a \in k$ is S/(t-a)S, which is a domain for a = 0 since $tk[t,t^{-1}] = k[t,t^{-1}]$, but not for $a \neq 0$, and S is not a domain either. We can avoid difficulties of this sort by working with graded rings.