
LECTURE 4-14

Following §15.5 of Dummit and Foote or Exercises 15ff. of Chapter 1 of Atiyah-
Macdonald, we define an analogue of the Zariski topology (in fact usually called exactly
that) for a general commutative ring R. The (prime) spectrum of R, denoted Spec R, is
by definition the set of its prime ideals. We topologize it much as we did Kn for K an
algebraically closed field, by decreeing that the closed sets V (S) are exactly those primes
containing a fixed subset S of R. As with the Zariski topology on Kn, one easily checks
that finite unions and arbitrary intersections of closed sets are closed, so Spec R is indeed
a topological space. Again as before, the closed set V (S) coincides with V (I), I the ideal
generated by S, and also with V (

√
I), so in the end it suffices to look at prime ideals

containing a fixed radical ideal. We have seen that the intersection of all prime ideals
containing any ideal I is the radical of I, so we immediately get the analogue of the
Nullstellensatz in this setting, stating that the map I → V (I) defines an order-reversing
bijection between radical ideals in R and closed subsets of Spec R. Now from the example
of Kn we are used to non-Hausdorff topologies, but Spec R takes the failure of separation
axioms to a new extreme, for if R is an integral domain then 0 is a prime ideal lying in
every other, so the closure of the point 0 in Spec R is all of Spec R! We call the 0 ideal
(and analogues of it for other rings) a generic point.

Now for R = K[x1, . . . , xn] with K an algebraically closed field we find that Spec R
contains the points of Kn (corresponding to the maximal ideals in R) and the topology
on these points is the Zariski topology of Kn, but now we get a whole family of new
points corresponding to the irreducible subvarieties V of Kn, the closure of any such point
consisting of the points corresponding to subvarieties W of V . It is important however to
broaden this example by considering arbitrary fields K. For n = 1 we have the generic
point together with one closed point for every monic irreducible polynomial f in K[x];
similarly for R = Z we have the generic point plus one closed point for every prime p > 0.

To understand what happens for n = 2 (and R = K[x, y]) it is helpful to make a general
observation. Given any ring homomorphism f : R → S one checks immediately that the
inverse image f−1(Q) is prime in R whenever Q is prime in S (by contrast the direct image
f(P ) for P prime in R need not be prime), so we get a map f∗ from Spec S to Spec R which
is easily seen to be continuous. In particular the intersection of any prime ideal of R with
any subring S of R is prime in S, so that if we know the prime ideals in S then we can say a
lot about those in R. Another powerful technique is localization: given any multiplicatively
closed subset U of R, the prime ideals of RU are in order-preserving 1-1 correspondence
with the prime ideals of R not meeting U and may well be easier to understand than the
full set Spec R. In particular, for R = K[x, y] a prime ideal P in R will either intersect
S = K[x] trivially and thus correspond to a prime ideal in the polynomial ring K(x)[y] in
one variable over the rational function field K(x), which must be principal, or else P meets
S in Q = (f), f monic irreducible in S, and then once again P corresponds to a prime ideal
in a polynomial ring in one variable, this time over the field K[x]/(f). The upshot (using
Gauss’s Lemma to understand how a principal ideal in K(x)[y] intersects K[x, y]) is that
the nonzero prime ideals of R are either principal, generated by an irreducible polynomial
in two variables, or maximal (having finite codimension in K[x, y]). A very similar picture
holds for R = Z[x]: every nonzero prime ideal is generated by either a single prime integer



p, or a single irreducible polynomial f in R, or else by a prime integer p and a polynomial
f reducing mod p to an irreducible polynomial f̄ in Zp[x]. The topology of Spec R is
determined by the inclusion relations among these ideals, which are easy to work out.

There are a number of general properties of Spec R which are quite entertaining to
derive. For example, let’s work out the condition for Spec R to be disconnected as a
topological space. This happens if and only if there are ideals I, J such that every prime
ideal contains exactly one of the ideals I, J (and not the same one for every prime). Then
the sum I+J must be the unit ideal, so there is e ∈ I with 1−e ∈ J . But then every prime
ideal contains e(1− e), forcing en(1− e)n = 0 for some n, but neither en nor (1− e)n is 0.
But then no prime ideal can contain both en and (1− e)n, whence these two powers also
generate the unit ideal, and any element of the intersection (en) ∩ (1 − e)n is annihilated
by (1 − e)n and en, hence by all of R and is 0. The Chinese Remainder Theorem then
guarantees that R is the direct sum of its quotients R/(en) and R/(1− e)n. Hence finally
there must be an idempotent element f of R different from 0 and 1 (so that f2 = f .
Conversely, it is not difficult to check that any ring R with such an idempotent has Spec R
disconnected.


