FINAL EXAM SOLUTIONS-MATH 506A

1. Classify as completely as you can the fields that are homomorphic images of $\mathbb{Q}[x, y, z]$, the polynomial ring in three variables over \mathbb{Q} .

Any such field, being a finitely generated \mathbb{Q} -algebra, must be a finite extension of \mathbb{Q} by Noether normalization; conversely, any such extension, being in fact generated a single element over \mathbb{Q} , is a homomorphic image of $\mathbb{Q}[x]$ or $\mathbb{Q}[x, y, z]$.

2. How many similarity classes are there of 4×4 matrices over \mathbb{Q} whose minimal polynomial is $(x-1)^2$ and whose characteristic polynomial is $(x-1)^4$? Give a representative from each class.

Any such similarity class is determined by its Jordan form, which either has two 2×2 blocks or a single 2×2 block together with two 1×1 blocks (in each case with eigenvalue 1; thus there are two such classes.

3. Let p be a prime and let G be a group of order p^3 whose center Z has order p. Find the degrees (=dimensions) of all the irreducible representations of G, noting that G/Z is abelian.

Since G/Z is ableian and of order p^2 , it has p^2 one-dimensional representations, each of which is also a one-dimensional representation of G. The remaining representations must have degree a power of p whose square is less than p^3 , whence this degree must be p. As there must be at least one representation of degree larger than one (G being nonabelian) there must be exactly p-1 such representations, each of degree p.

4. Give a careful definition of the cohomology groups $H^n(G, A)$ of a finite group G with coefficients in a G-module A.

We have $H^n(G, A) = \operatorname{Ext}^n_{\mathbb{Z}G}(\mathbb{Z}, A)$, the *n*th Ext group of the trivial module \mathbb{Z} over the integral group ring $R = \mathbb{Z}G$ with coefficients in the *G*-module *A* (computed via a projective resolution of \mathbb{Z} as an *R*-module).

5. Let k be an algebraically closed field. Show that there is no injective k-algebra homomorphism from the polynomial ring $k[x_1, \ldots, x_n]$ to $k[x_1, \ldots, x_m]$ if n > m.

This was the hardest problem. If there were such a homomorphism, there would be n elements of $k[x_1, \ldots, x_m]$, or of its quotient field, algebraically independent over k, contradicting dim $k^m = m$.

6. Show that the induced map Spec $\mathbb{Z}[i] \to \text{Spec } \mathbb{Z}$ arising from the inclusion $\mathbb{Z} \subset \mathbb{Z}[i]$ is surjective.

This follows by a result in class, since $R = \mathbb{Z}[i]$ is integral over \mathbb{Z} (or else argue directly as in class that every nonzero prime ideal (p) in \mathbb{Z} is either such that (p) remains prime in R(if $p \equiv 3 \mod 4$) or else is the contraction of the prime ideal (a + bi) in R, where $a, b \in \mathbb{Z}$ are such that $a^2 + b^2 = p$).

7. Classify the finitely generated projective modules over \mathbb{Z} .

Any such module, being a submodule of a free \mathbb{Z} -module, must itself be free, and conversely any free \mathbb{Z} -module is projective over \mathbb{Z} .

8. Show that the polynomial ring $\mathbb{Z}[x]$ is not a Dedekind domain but $\mathbb{Q}[x]$ is.

 $\mathbb{Z}[x]$ is not a Dedekind domain since its Krull dimension is 2 (the nonzero prime ideal (2) is not maximal); $\mathbb{Q}[x]$ is a Dedekind domain since it is Noetherian with Krull dimension one and is integrally closed (being a UFD).