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We wrap up the material on group cohomology with a brief
account of its ring structure, given by the cup product, and give
another setting in which factor sets arise.
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As many of you know, groups are not the only mathematical
objects with cohomology groups attached to them. Given any
topological space X and a commutative ring R, one has
homology groups Hn(X ,R) and cohomology groups Hn(X ,R) of X
with coefficients in R. These have the structure of R-modules, not
just abelian groups; in addition, the latter groups have a ring
structure under something called the cup product. The sum
H∗(X ,R) =

⊕
n Hn(X ,R) thereby acquires the structure of a

graded R-algebra, since the cup product of Hn(X ,R) and
Hm(X ,R) lies in Hn+m(X ,R). In the setting of group cohomology,
assume for simplicity that G acts trivially on a field k ; then the
group cohomology ring H∗(G, k) =

⊕
n Hn(G, k) is a graded

k-algebra. It is graded commutative in the sense that
xy = (−1)ijyx if x ∈ H i(G, k), y ∈ H j(G, k).
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Take first k = F2, the field of order 2; here graded commutativity is
the same as commutativity. Also let G = Z2, the cyclic group of
order 2. You have seen that Hn(G, F2) ∼= Z2 for all n; now I can say
more precisely that the ring H∗(G, k) is isomorphic to the
polynomial ring k[x ] in one variable, where the degree of x is 1
(as usual). For odd primes p, the story is a bit more complicated;
taking G ∼= Zp to be cyclic of order p and Fp to be the field of
this order, we still have Hn(G, k) ∼= Zp for all n, but now it is the
sum

⊕
n H2n(G, k) of the cohomology groups of even degree

that is isomorphic to the polynomial ring k[x ], taking the degree
of the variable x to be 2, while the sum

⊕
n H2n+1(G, k) can be

realized as k[x ]y , where the degree of y is 1 and y2 = 0.
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Returning to the case k = F2, suppose now that G is replaced by
the product Zn

2 of n copies of Z2. Then the Künneth formula in
algebraic topology or group cohomology asserts that H∗(G, k) is
isomorphic to the tensor product ⊗nk[x ] of n copies of k[x ],
which may be identified with the polynomial ring k[x1, . . . , xn];
here (again as usual) we take the degrees of all variables xi to
be 1. Thus if n = 2, we find that H2(G, k) has basis x2

1 , x1x2, x2
2 over

k , so its cardinality is 8, as previously computed. A similar nth
tensor power formula holds for H∗(Zp,×Zp, Fp).
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Besides group extensions, central simple algebras provide
another context in which factor sets arise. These also provide a
nice connection between group cohomology and the Galois
theory you studied earlier. Let K be a finite Galois extension of a
field F with Galois group G. Let f = {aσ,τ}σ,τ∈G be a normalized
factor set of G with values in K ∗. Let Bf be the vector space over
K with basis uσ for σ ∈ G. Define a ring structure on Bf via
uσα = σ(α)uσ,uσuτ = aσ,τuστ for σ, τ ∈ G, α ∈ K . We call Bf a
crossed product algebra for the factor set f (and G and K ∗); see
DF, p. 833. Note that if f is the constant function 1, then Bf is a
kind of twisted analogue of the group algebra KG, where K no
longer commutes with G but instead elements of G move past
elements of K via the Galois group action. In general, u1 is the
multiplicative identity for Bf , since f is normalized.
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If the factor set f is replaced by another one f ′ lying in the same
cohomology class, then it is easy to check that the resulting
algebra Bf ′ is isomorphic to Bf by a map which is the identity on
K ∗. Thus there is a bijection between elements of H2(G,K ∗) and
K -isomorphism classes of crossed product algebras over F
containing K . It is easy to see that the center of any algebra Bf is
exactly Fu1

∼= F : any combination
∑
σ∈G

ασuσ commutes with K if

and only if aσ = 0 for all σ ̸= 1 (since only σ = 1 ∈ G fixes all of K )
and then ku1 commutes with all uσ if and only if k ∈ K lies in F .
Similarly, it is easy to see that Bf has no nonzero proper two-sided
ideals: given a sum s =

∑
ασuσ with as few nonzero terms as

possible lying in a proper nonzero ideal I, by replacing s with
sβ − βs for suitable β ∈ K we get a sum with fewer nonzero terms
in I, unless s has only one term; but any single term aσuσ is a unit
in Bf . Thus Bf is indeed what is called a central simple algebra
over F (“simple” meaning that it has no nonzero proper
two-sided ideals).
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Given any finite-dimensional central simple algebra A over a
field F ,A has a maximal proper left ideal L (that is, one of
maximal dimension), so that A/L is an irreducible left A-module.
M. Letting D be the ring of endomorphisms of M commuting with
the A action, we see from Schur’s Lemma (the version you
proved in HW some weeks back) that D is a division ring
containing F as a subfield. By the same reasoning that we used
to determine the structure of the group algebra KG for G a finite
group and K an algebraically closed field of characteristic not
dividing the order of G, we deduce that A ∼= Mn(D), the ring of
all n × n matrices over D (just one such ring rather than the direct
sum of two or more since A is simple). It follows that the
dimensions of both A and D over F are squares, at least in the
special case A = Bf for some factor set f (and it turns out in
general).
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You have already seen an example of such an algebra A,
namely the ring H of quaternions (which is central simple over
the real field R). Note that H is a crossed product algebra: it
contains a copy of the unique proper finite extension of R,
namely C, and it contains an element j acting on C by complex
conjugation, the unique nontrivial element of the Galois group
of C over R (so that jzj−1 = z̄ for z ∈ C). The corresponding factor
set f has f (1, 1) = f (1, j) = f (j, 1) = 1, f (j, j) = −1. There is no need
here to take R as the base field; we could just as easily have
started with Q and its Galois extension Q[i]. In fact, given any
a,b ∈ Q∗ with a not a square in Q∗, we could adjoin elements
x , y to Q to make a central simple Q-algebra Qa,b with the
defining relations x2 = a, y2 = b, xy = −yx . Every such algebra is
either a division ring or isomorphic to the ring M2(Q) of 2 × 2
matrices over Q.

Lecture 5-3: The cup product and Brauer group May 3, 2024 9 / 13



In general, for any field F , we introduce an equivalence relation
on central simple algebras A over F , which enables us to put a
group structure on the set of such algebras. We have seen that
A ∼= Mn((D) for some division ring D with center F (and D turns
out to be unique); we decree that two such algebras A,A′ are
equivalent if both are isomorphic to a matrix ring over the same
division ring D. The set of equivalence classes [A] of central
simple algebras A over F is then called the Brauer group Br(F) of
F .
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Multiplication in this group is defined as follows. Given two
central simple algebras A,B over the same F , the tensor product
C = A ⊗F B acquires a multiplication via the recipe
(a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ for a,a′,∈ A,b,b′ ∈ B. One checks
immediately that the recipe is compatible with the defining
relations of the tensor product; it is also not difficult to see that C
is central simple over F . This multiplication is well defined on
equivalence classes. It turns out that the product [Bf ][Bg] of the
classes of two crossed product algebras relative to the same F
and K is just [Bfg], the class corresponding to the product of the
factor sets f , and g.
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Of course [F ] is the identity element of Br(F). If [A] lies in the
Brauer group its inverse is the class [A′] of A′ = Aopp, where A′ is
defined to be A as an additive group but with reversed
multiplication, so that ab in A′ equals ba in A. Then
A ⊗F A′ ∼= Mn(F), where n = dimF A, so that [A′] is indeed the
inverse of [A]. The crossed product B1 corresponding to the trivial
factor set 1 is then isomorphic to a matrix ring over F , so that
addition in H2(G,K ∗) is compatible with multiplication in the
Brauer group.
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We conclude with a couple of examples. The Brauer group of C,
or any algebraically closed field, is trivial, since C does not admit
any proper finite extension that is a division ring. The Brauer
group of R has just two elements, namely the classes [R] and [H].
The Brauer group of a finite field F is trivial, since there was a
homework problem last quarter showing that a finite division ring
is commutative, so that the only central simple algebras over F
are matrix rings over F . The Brauer group of Q is huge,
incorporating as it does the cohomology groups H2(G,K ∗) for
every finite Galois group G of an extension K of Q (which is
conjecturally every finite group).
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