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We wrap up the material on group cohomology with a brief
account of its ring structure, given by the cup product, and give
another sefting in which factor sets arise.
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As many of you know, groups are not the only mathematical
objects with cohomology groups attached to them. Given any
topological space X and a commutative ring R, one has
homology groups Hx(X, R) and cohomology groups H?(X, R) of X
with coefficients in R. These have the structure of R-modules, not
just abelian groups; in addifion, the latter groups have a ring
structure under something called the cup product. The sum
H*(X,R) = @, H"(X, R) thereby acquires the structure of a
graded R-algebra, since the cup product of H?(X, R) and

H™(X, R) lies in H™M(X, R). In the setting of group cohomology,
assume for simplicity that G acts trivially on a field k; then the
group cohomology ring H*(G, k) = @,H"(G, k) is a graded
k-algebra. It is graded commutative in the sense that

xy = (-=Nyxif x e H(G,k),y € H(G, k).
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Take first k = F,, the field of order 2; here graded commutativity is
the same as commutativity. Also let G = Z,, the cyclic group of
order 2. You have seen that H"(G, F,) = Z, for all n; now | can say
more precisely that the ring H*(G, k) is isomorphic to the
polynomial ring k[x] in one variable, where the degree of x is 1
(as usual). For odd primes p, the story is a bit more complicated;
taking G = Zy to be cyclic of order p and F, to be the field of
this order, we still have H"(G, k) = Z, for all n, but now it is the
sum @,, H*"(G, k) of the cohomology groups of even degree
that is isomorphic to the polynomial ring k[x]. taking the degree
of the variable x to be 2, while the sum @, H*"+1(G, k) can be
realized as k[x]y. where the degree of y is 1 and y? = 0.
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Returning to the case k = F,, suppose now that G is replaced by
the product ZJ of n copies of Z,. Then the Kunneth formulain
algebraic topology or group cohomology asserts that H*(G, k) is
isomorphic to the tensor product @"k[x] of n copies of k[x].
which may be identified with the polynomial ring k[x, ..., xn];
here (again as usual) we take the degrees of all variables x; to
be 1. Thus if n = 2, we find that H?(G, k) has basis X2, X1 X, X2 over
k, so its cardinality is 8, as previously computed. A similar nth
tensor power formula holds for H*(Zp, xZp, Fp).
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Besides group extensions, central simple algebras provide
another context in which factor sets arise. These also provide a
nice connection between group cohomology and the Galois
theory you studied earlier. Let K be a finite Galois extension of a
field F with Galois group G. Let f = {07}, rec D€ G Nnormalized
factor set of G with values in K*. Let B; be the vector space over
K with basis u, for o € G. Define a ring structure on B; via

Uy = o(a)Uy, UyUr = Qp 7 Uy fOro,7 € G, € K. We call B a
crossed product algebra for the factor set f (and G and K*); see
DF, p. 833. Note that if f is the constant function 1, then By is a
kind of twisted analogue of the group algebra KG, where K no
longer commutes with G but instead elements of G move past
elements of K via the Galois group action. In general, u; is the
multiplicative identity for By, since f is normalized.
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If the factor set f is replaced by another one f’ lying in the same
cohomology class, then it is easy to check that the resulting
algebra By is isomorphic to B by a map which is the identity on
K*. Thus there is a bijection between elements of H*(G, K*) and
K-isomorphism classes of crossed product algebras over F
containing K. It is easy to see that the center of any algebra By is

exactly Fu; = F: any combination ) «,uU, commutes with K if
oceG
andonlyif a, =0 forall o # 1 (since only o = 1 € G fixes all of K)

and then ku; commutes with all u,, if and only if k € K lies in F.
Similarly, it is easy to see that B has no nonzero proper two-sided
ideals: given asum s = )" a,U, with as few nonzero terms as
possible lying in a proper nonzero ideal [, by replacing s with

sp — s for suitable g € K we get a sum with fewer nonzero terms
in [, unless s has only one term; but any single term aou, is a unit
in By. Thus By is indeed what is called a central simple algebra
over F ("simple” meaning that it has no nonzero proper
two-sided ideals).
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Given any finite-dimensional central simple algebra A over a
field F, A has a maximal proper left ideal L (that is, one of
maximal dimension), so that A/L is an irreducible left A-module.
M. Letting D be the ring of endomorphisms of M commuting with
the A action, we see from Schur’s Lemma (the version you
proved in HW some weeks back) that D is a division ring
containing F as a subfield. By the same reasoning that we used
to determine the structure of the group algebra KG for G a finite
group and K an algebraically closed field of characteristic not
dividing the order of G, we deduce that A = M,(D), the ring of
all n x n matrices over D (just one such ring rather than the direct
sum of two or more since A is simple). It follows that the
dimensions of both A and D over F are squares, at least in the
special case A = B; for some factor set f (and it furns out in
general).

Lecture 5-3: The cup product and Brauer ¢ May 3, 2024



You have already seen an example of such an algebra A,
namely the ring H of quaternions (which is central simple over
the real field R). Note that H is a crossed product algebra: it
contains a copy of the unique proper finite extension of R,
namely C, and it contains an element j acting on C by complex
conjugation, the unique nontrivial element of the Galois group
of C over R (so that jzi—! = Z for z € C). The corresponding factor
set fhas f(1,1) =f(1,)) =f(,1) = 1,f(j,j) = —1. There is no need
here to take R as the base field; we could just as easily have
started with Q and its Galois extension Q[/]. In fact, given any

a, b € Q* with a not a square in Q*, we could adjoin elements
X,y to Q to make a central simple Q-algebra Qg p with the
defining relations x2 = a, y2 = b, xy = —yx. Every such algebra is
either a division ring or isomorphic to the ring M,(Q) of 2 x 2
matrices over Q.
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In general, for any field F, we intfroduce an equivalence relation
on central simple algebras A over F, which enables us to put a
group structure on the set of such algebras. We have seen that
A = Mu((D) for some division ring D with center F (and D turns
out to be unique); we decree that two such algebras A, A’ are
equivalent if both are isomorphic to a matrix ring over the same
division ring D. The set of equivalence classes [A] of central
simple algebras A over F is then called the Brauer group Br(F) of
F.
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Multiplication in this group is defined as follows. Given two
central simple algebras A, B over the same F, the tensor product
C = A®fr B acquires a multiplication via the recipe
(aeb)(deb)=ad @ bb fora,d, e A b,b € B. One checks
immediately that the recipe is compatible with the defining
relations of the tensor product; it is also not difficult to see that C
is central simple over F. This multiplication is well defined on
equivalence classes. If turns out that the product [B][Bg] of the
classes of two crossed product algebras relative to the same F
and K is just [Brg], the class corresponding to the product of the
factor sets f, and g.
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Of course [F] is the identity element of Br(F). If [A] lies in the
Brauer group its inverse is the class [A’] of A’ = AP, where A’ is
defined to be A as an additive group but with reversed
multiplication, so that ab in A’ equals bain A. Then

A@r A" = Mp(F), where n = dimg A, so that [A'] is indeed the
inverse of [A]. The crossed product By corresponding to the frivial
factor set 1 is then isomorphic fo a matrix ring over F, so that
addition in HQ(G, K*) is compatible with multiplication in the
Brauer group.
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We conclude with a couple of examples. The Brauer group of C,
or any algebraically closed field, is trivial, since C does not admit
any proper finite extension that is a division ring. The Brauer
group of R has just two elements, namely the classes [R] and [H].
The Brauer group of a finite field F is trivial, since there was a
homework problem last quarter showing that a finite division ring
is commutative, so that the only central simple algebras over F
are matrix rings over F. The Brauer group of Q is huge,
incorporating as it does the conomology groups H2(G, K*) for
every finite Galois group G of an extension K of Q (which is
conjecturally every finite group).
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