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We continue with review, now summarizing the material on
group cohomology and starting on algebraic geometry.
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We start with the notion of projective module. Given a ring R
(not necessarily commutative) and a left R-module M, we say
that M is projective if given any surjection g : N → N′ of left
R-modules and an R-module map f : M → N′ there is an
R-module map h : M → N with gh = f (so that h lifts f to N). It is
easy to show that M is projective if and only if M is a direct
summand of a free R-module. Thus, in particular, if R is a PID and
M is finitely generated (or even in general), M is projective if and
only if M is free.
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In particular, every free R-module is projective; since any
R-module A is a homomorphic image of a free module (for
example, the one with any set of generators of A as a free basis)
one sees that any such module A admits a projective resolution
· · ·Pn → · · · → · · · → P1 → P0 → A → 0, so that the Pi are projective
and the sequence is exact. Taking homomorphisms into an
R-module D, we get a cochain complex
0 → homR(A,D) → homR(P0,D) → · · · , where
dn : homR(Pn−1,D) → homR(Pn,D). The the nth cohomology group
of this complex, or the quotient kerdn+1/ im dn, is defined to be
the nth Ext group Extn

R(A,D) of A (with coefficients in D). It is
independent of the choice of projective resolution {Pi}. In
particular Ext0

R(A,D) = homR(A,D). The Ext groups are Z-modules,
but not R-modules, unless R is commutative.
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The cohomology groups Hn(G,A) of a (finite) group G with
coefficients in a G-module A are a special case of Ext groups.
More precisely, let R = ZG be the integral group ring consisting
of all combinations

∑
g∈G

zgg with zg ∈ Z and addition and

multiplication defined in the obvious way. A G-module A is then
just a (left) R–module; in particular, one has the trivial G-module
Z, on which G acts trivially. Then the cohomology group
Hn(G,A) is defined to be Extn

R(Z,A). In particular H0(G,A)

identifies with AG, the subgroup of G-fixed elements in A.
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If G = Zm is cyclic of order m, say with generator σ, then one has
a simple explicit resolution of Z in which every term apart from Z
is R = ZG; the maps toggle between multiplication by
N = 1 + σ + · · ·+ σm−1 and multiplication by σ − 1, except for the
last one, which sends

∑
zgg to

∑
zg. It follows easily that

H0(G,A) ∼= AG,Hn(G,A) ∼= AG/NA if n is even and n ≥ 2, while
Hn(G,A) ∼= NA/(σ − 1)A if n is odd, where NA = {a ∈ A : Na = 0}.
For general groups G, there is a standard resolution called the
bar resolution to compute Hn(G,A); but don’t worry about the
details of this resolution.
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An easy consequence of the definition of Hn(G,A) is that if A is
torsion, so that there is a nonzero integer m with mA = 0, then we
also have mHn(G,A) = 0 for all n. A deeper fact, relying on maps
called the restriction and corestriction maps, is that
|G|Hn(G,A) = 0 for all n > 0 if G has order |G|. Putting these two
constraints together, we deduce that Hn(G,A) = 0 for all n > 0 if
A and G are finite with relatively prime orders. As a
consequence of this vanishing result together with the
interpretation of H2(G,A) by group extensions, we obtain Schur’s
Theorem that any finite group E admitting a normal subgroup A
(not necessarily abelian) whose index is relatively prime to its
order necessarily has a subgroup G isomorphic to E/A, so that E
is the semidirect product of A and G. Moreover, any two
complements of A in E are conjugate under A if A is abelian.
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Turning now to algebraic geometry, we start with an
algebraically closed field k and recall that in the Zariski topology
the closed, or algebraic, subsets of kn (now denoted An and
called affine space) are precisely the zero loci Z(I) of ideals I in
the polynomial ring Pn = k[x1, . . . , xn]. The Nullstellensatz then
asserts the existence of inclusion-reversing inverse bijections
between radical ideals in Pn and closed subsets of An, mapping
an ideal I to its zero locus Z(I) and a closed set Z to the ideal I(Z)
of polynomials vanishing on Z .
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A closed subset V is called irreducible if it is not the union of two
(nonempty) proper closed subsets. Any closed set is then
uniquely the union of finitely many irreducible closed subsets,
none contained in another; these can overlap, unlike the
connected components of a topological space. We call V a
variety if it is irreducible. Subvarieties of An then correspond to
prime ideals in Pn via the Nullstellensatz bijection.
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The Nullstellensatz was proved via the Noether normalization
lemma, which asserts for any field k that any finitely generated
k-algebra is a finitely generated integral extension of some
polynomial ring Pd over k . Using this we showed that the only
finitely generated k-algebras that are field are the finite
extensions of k , from which one can deduce a version of the
Nullstellensatz that holds over any field k . Also Noether
normalization gives a very convenient alternate characterization
of the dimension of a variety V (that is, an irreducible closed
subset of An). The dimension of V was initially defined as the
transcendence degree of the quotient field k(V ) of its
coordinate ring k[V ] = Pn/I(v), I the ideal of V ; but it can also be
defined as the integer d such that k[V ] is integral over Pd (this
integer being unique).
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Morphisms π (that is, roughly speaking, polynomial maps) from
oneclosed set V to another one W , not necessarily of the same
affine space An, correspond to k-algebra homomorphisms π̃
from the coordinate ring k[W ] to k[V ]. If π is surjective then π̃ is
injective; if π is surjective then π̃ is surjective. In particular any
proper subvariety W of a variety V is such that k[W ] is a quotient
of k[V ]. The dimension dimW must be strictly less than dimV in this
situation.
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More algebraically and generally, we can define the (Krull)
dimension of a commutative ring R to be the largest number n
such that there is a chain P0 ⊂ · · · ⊂ Pn of distinct prime ideals in
R. The dimension of an algebraic set V is then equal to the Krull
dimension of its coordinate ring k[V ].
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Given an algebraic set V ⊂ An and a point v ∈ V , the tangent
space TvV of V at v is the subspace of kn defined by the linear

polynomials
n∑

i=1
Di f (v)xi , where Di denotes partial differentiation

with respect to the ith variable xi and the functions f run through
the elements of the ideal I(V ) of V , or equivalently (thanks to the
product rule) just through a set of generators of I. On a
nonempty open subset of V , this space has dimension equal to
that of V ; we call any point v for which this holds nonsingular.
The set of singular (i.e., not nonsingular) points forms a proper
closed subset of V , of smaller dimension; the tangent space at
any of those points has dimension larger than that of V .
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