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Going beyond discrete valuation rings, we develop the
properties of non-local integrally closed Noetherian domains of
dimension one, or Dedekind domains.
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Before specializing down to the main objects of study, we
introduce a general definition that is very useful in the study of
ideals in integral domains.

Definition, p. 760
Let R be an integral domain with quotient field K . A fractional
ideal I of R is an R-submodule A of K such that dA ⊆ R for some
nonzero d ∈ R (or equivalently A ⊂ d−1R for some d ∈ R). A
fractional ideal A is said to be invertible if there is another
fractional ideal B with AB = R.

The simplest example of an R-submodule of K that is not a
fractional ideal is the subgroup S of Q consisting of all rational
numbers whose denominator is a power of 2. If A is invertible,
then its inverse B is unique, for if AB = AC = R, then
B = B(AC) = (BA)C = C.
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The set of invertible ideals then forms a group under
multiplication; as Rk is invertible for every nonzero k ∈ K , the set
of principal fractional ideals Rk is a subgroup of this group. The
quotient group is called the class group of R (p. 761). In general
the class group can be any abelian group. We can get more
control on fractional ideals if we assume more about R.

Definition, p. 764
A Dedekind domain R is an integrally closed Noetherian domain
of dimension one (so that every element of the quotient field EK
of R that is integral over R already lies in R).

For example, any PID is a Dedekind domain (since any PID is a
UFD and IUFDs are integrally closed).
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cf. Theorem 15, p. 765
Every nonzero fractional ideal I in a Dedekind domain R is
invertible.

Let K be the quotient field of R. Given I ̸= 0, define
I−1 = {x ∈ K : xI ⊂ R}. Then clearly I−1 is a nonzero fractional
ideal and II−1 is an ideal of R. If II−1 ̸= R, then we have II−1 ⊆ M
for some maximal ideal M. Now the localization RM is a local
Noetherian domain of dimension one which is easily seen to be
integrally closed; by a result proved last time it is a DVR. But then
the localization IM of I is principal, say generated by y , which we
can take to lie in I. Then y−1 ∈ K sends I and IM to R,
contradicting II−1 ⊂ M.
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As a simple corollary we get

Theorem; cf. Theorem 15, p. 765
Every nonzero ideal I in a Dedekind domain is a product P1 · · ·Pm
of prime ideals, with the Pi unique up to reordering.
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Proof.
If I is not already prime then it lies in a maximal ideal M and we
have M−1)M = I, IM−1 ⊆ R. We cannot have IM−1 = I, for then
IM = I, IMRM = IRM , and then fixing a minimal set of generators
i1, . . . , im of I and arguing as we did last time to show that M2 ̸= M
for the maximal ideal M of a local Dedekind domain (we are
invoking Nakayama’s Lemma, which is Proposition 1 on p. 751),
we get a contradiction. Since 1 ∈ M−1 we get that IM−1 is an
ideal of R properly containing I; iterating this process we
eventually write I as a finite product P1 · · ·Pm of maximal ideals
Pi , all of them prime. If there is another product Q1 · · ·Qr of
maximal ideals equalling I, then primeness forces Q1 to contain
one of the Pi , whence Q1 = Pi . Multiplying by P−1

i = Q−1
1 and

continuing inductively, we deduce the uniqueness.
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Thus we get unique factorization of ideals (not of elements) as
products of primes in a Dedekind domain. The simplest example
of a Dedekind domain for which unique factorization of
elements fails (or equivalently, not every ideal is principal) is the
integral closure R = Z[

√
−5] = {a + b

√
−5 : a,b ∈ Z} of Z in

Q[
√
−5]. Here the element 6 has two essentially distinct

factorizations into primes, namely 2 · 3 = (1 +
√
−5)(1 −

√
−5). The

factors 2, 3, 1 ±
√
−5 really are prime in R, since if we define the

norm N(a + b
√
−5) = (a + b

√
−5)(a − b

√
−5) = a2 + 5b2 ∈ Z, as

for Gaussian integers, then we have the product rule
N(zw) = N(z)N(w). Thus the only way that one of 2, 3, 1 ±

√
−5

could fail to be prime is if there were an element R of norm 2 or
3; but no such element exists.
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More generally, the integral closure R of Z in a finite Galois
extension K of Q (often called the ring of integers in K ) is a
Dedekind domain, being integrally closed, a domain, and of
dimension one (like Z). It is Noetherian because it is in fact a
finitely generated Z-module (Theorem 29, p. 676). In this case
the class group is known to be finite (for general Dedekind
domains it can be any abelian group); its order is called the
class number of R (see the definition on p. 761). The class
number provides a precise measure of how far the Dedekind
domain is from being a PID (or a UFD; it turns out that Dedekind
domains are PIDs if and only if they are UFDs). The class number
of the ring R above is 2.

Lecture 5-24: Dedekind domains May 24, 2024 9 / 1



Much is known about rings of integers Od in quadratic extensions
Q[

√
d] of Q, where d ∈ Z is square-free, particularly (oddly

enough) for imaginary extensions (ones with d < 0). Here Od is
spanned over Z by 1 and

√
d if d ≡ 2 or 3 mod 4 and by 1 and

1+
√

d
2 if d ≡ 1 mod 4. A striking result obtained only in 1967 is that

Od is a UFD for d < 0 if and only if d is one of the values
−1,−2,−3,−7,−11,−19,−43,−67,−163. As an interesting
historical aside, an earlier proof of this result announced in 1952
but not generally accepted at the time was later acknowledged
to be correct after all by the author of the 1967 proof.
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Another well-studied case is that of rings Op of integers in a
cyclotomic field Q[e2πi/p], the splitting field of xp − 1 over Q,
where p is prime. Here Op is generated by 1 and e2πi/p as a
Z-algebra. This case is historically important becausethe
incorrect assumption that Op is always a UFD lay at the heart of
many false proofs of Fermat’s Last Theorem. In fact Op is a UFD
only for p ≤ 19.
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In algebraic geometry Dedekind domains arise as coordinate
rings of nonsingular curves (Corollary 13, p. 763). Integral
closedness of such ring turns out to be equivalent to
nonsingularity of the curve. In general integral closedness of the
coordinate ring k[V ] of a variety V implies but is not equivalent to
the codimension of the set of singular points in V being at least 2.

The last week of the course will be devoted entirely to review.

Lecture 5-24: Dedekind domains May 24, 2024 12 / 1


