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We give a first example of a scheme, namely a quasi-affine
variety (open subset of a variety), and wrap up the treatment of
nonsingular points on varieties from last time. We then look at
another example of a scheme, namely projective space.
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Let U be a nonempty open subset of An. Then U need not have
the structure of a variety, but it is a finite union of affine sets
(isomorphic to varieties). To see this, recall that U is the
complement of a closed set Z(f1, . . . , fm) and thus a finite union
of principal open sets Vfi , each consisting of the points where a
single polynomial fi does not vanish. Then Vfi is isomorphic to the
subvariety of An+1 defined by the equation fi(x1, . . . , xn)xn+1 = 1
and the polynomial f (x1, . . . , xn)xn+1 is easily seen to be
irreducible. Consequently An is quasicompact in the sense that
every open cover admits a finite subcover; we call this property
“quasicompactness” rather than compactness because An is
not a Hausdorff space.
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In the same way, any nonempty open subset U of a variety V
can be written as a finite union of varieties (each irreducible
since its coordinate ring is a localization of the coordinate ring of
V ). Such a subset is called a quasi-affine variety. Every point in U
has a neighborhood that is affine. A topological space with this
property is a special case of a scheme; we will later generalize
this term to a wider class of spaces.
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For now we introduce another notion (which has no counterpart
for differentiable manifolds). Two varieties V ,W are called
birational if their function fields k(V ), k(W ) are isomorphic as
extensions of k . Whenever this happens the isomorphism from
k(V ) to k(W ) maps the coordinate ring k[V ] onto a subring of
k(W ) finitely generated as a k-algebra. This need not
correspond to a map defined on all of W , but it does correspond
to an isomorphism ϕ from an open subset W ′ (defined by the
nonvanishing of a suitable polynomial) to an open subset V ′ of V
(in the sense that every point of W ′ has an affine neighborhood
on which ϕ restricts to an isomorphism of varieties).
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We call ϕ a rational map from W to V (rational in the sense that it
is not necessarily defined on all of W ; these are the
higher-dimensional analogues of the regular maps defined
earlier). Conversely, it is not difficult to see that two varieties V ,W
admitting nonempty isomorphic open subsets V ′,W ′ in the
above sense are birational.
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Now we can pick up from where we left off last time. Let V be a
variety of dimension d. We know that the tangent space TvV of
V at a nonsingular point v has a constant dimension; we would
like to show that this dimension is d. To this end, recall by Noether
normalization that the coordinate ring k[V ] of V is a finitely
generated integral extension of a polynomial ring k[y1, . . . , yd ].
Thus the function field k(V ) is a finite extension of k(y1, . . . , yd);
changing the yi if necessary we may assume that it is a
separable extension of this field (or just assume for simplicity that
the characteristic of k is 0, so that separability is automatic). By
the theorem of the primitive element, k(V ) is then generated by
a single element y over k(y1, . . . , yd), say with minimal polynomial
q.
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Writing q as a polynomial in y = yd+1 with coefficients in
k(y1, . . . , yd), let f be the product of the denominators of these
coefficients. Replacing y by y ′ = y

f , we find that the minimal
polynomial q′ of y ′ has coefficients that are polynomials in
y1, . . . , yd , so that it is a polynomial in k[y1, . . . , yd ], yd+1. The
hypersurface H in Ad+1 defined by the equation q′ = 0 is then
birational to the original variety V , so has an open subset H′

isomorphic to an open subset V ′ of V . The tangent space at any
point h of H′, thanks to its realization as the dual of the quotient
mh/m

2
h, where mh is the maximal ideal of the local ring OH′,h of H′

at h, is the same as that of H.

Lecture 5-17: Nonsingular points, schemes, and projective spaceMay 17, 2024 8 / 1



But now H has a tangent space of dimension d + 1 − 1 = d at
any point where the gradient of its defining polynomial q′ is not
0. There is an open subset of such points which is clearly
nonempty in characteristic 0. In characteristic p > 0 the only
way that it could be empty is if q′ were a polynomial in the pth
powers xp

1 , . . . , x
p
d+1 of its variables x1, . . . , xd+1. But if so we could

take pth roots of its coefficients in k (since k is algebraically
closed) to write q′ as the pth power of another polynomial,
contradicting the irreducibility of q′. We finally conclude that the
set of nonsingular points of V is nonempty and open, the
tangent space at any of them having dimension d, while the set
of its singular points is a proper closed subvariety (see DF, p. 725).
For example, the only singular point of our old friend the variety
in A2 defined by x3 − y2 = 0 is (0, 0). The tangent space at this
point is two-dimensional.
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Now we broaden our horizons, looking at schemes that are not
quasi-affine. The most common examples of such schemes in
practice are projective varieties. Start by removing the origin
0⃗ = (0, . . . ,0) from affine (n + 1)-space An+1. Introduce an
equivalence relation on this space, declaring that
(a1, . . . ,an+1) ∼ (xa1, . . . , xan+1) whenever x ∈ k∗. The resulting
quotient space Pn of equivalence classes is called projective
n-space, with a point in it often denoted by [a1, . . . ,an+1]. The
brackets serve as a reminder of the equivalence relation.
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No nonconstant polynomial p ∈ Pn+1 takes a well-defined value
on every point in Pn; but if p is homogeneous, say of degree d,
then p(a1, . . . ,an+1) = 0 if and only if p(xa1, . . . , xan+1) = 0, for all
x ,a1, . . . ,an+1 ∈ k . Hence the zero locus Z(p) of any such
polynomial in Pn, or more generally the zero locus Z(p1, . . . ,pm)
of a finite set of homogeneous polynomials in Pn+1 in Pn, not
necessarily of the same degree, is well defined.
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In fact the zero locus Z(f1, . . . , fm) in affine space An+1 of any set
f1, . . . , fm of polynomials in Pn+1, is a union of lines through the
origin, or equivalently of ∼ equivalence classes and 0⃗, if and only
if the ideal I generated by the fi is homogeneous. That is, it
contains the homogeneous part pd of degree d of any of its
elements p, for all d. As a quotient topological space of An+1

minus the origin, Pn inherits a topology induced by the Zariski
topology. The closed sets in this topology are the zero loci in Pn

of finite sets of homogeneous polynomials in Pn+1.

Lecture 5-17: Nonsingular points, schemes, and projective spaceMay 17, 2024 12 / 1



From the Nullstellensatz we therefore deduce

Theorem: homogeneous Nullstellensatz
There is an inclusion-reversing bijection between radical
homogeneous ideals of Pn+1 other than M = (x1, . . . , xn+1) and
algebraic (Zariski closed) subsets of Pn.

Here the ideal M has to be omitted from the correspondence as
its only common zero in An+1 is the deleted point 0⃗; for this
reason it is sometimes called the irrelevant ideal.
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The notion of irreducibility then carries over from the Zariski
topology on An+1; irreducible algebraic subsets of Pn are called
projective varieties; they correspond to homogeneous prime
ideals in Pn+1. The notion of dimension using chains of (now
homogeneous) prime ideals then also carries over; since every
chain I0 ⊂ · · · ⊂ Id of distinct homogeneous prime ideals in Pn+1
other than M can be lengthened by adding M at the end, we
see that the dimension of the projective variety P defined by the
homogeneous polynomials f1, . . . , fm ∈ Pn+1 is one less than the
dimension d of the affine variety V defined by the same
polynomials, provided that d ≥ 1.
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In order to see that Pn and its closed subvarieties are schemes,
we need to decompose this space into affine subvarieties. To this
end, observe for all indices i between 1 and n + 1 that the set Pi
of points [x1, . . . , xn+1] ∈ Pn with xi ̸= 0 may be naturally identified
with An via the map (y1, . . . , yn) 7→ [y1, . . . , yi−1, 1, yi , . . . , yn], since
[x1, . . . , xn+1] ∼ [ x1

xi
, . . . , 1, . . . xn+1

xi
]. In this way we get a large

collection of regular functions on Pn, or more generally on any
projective variety, extending the definition of regular function in
the obvious way from varieties to schemes. The key difference
from the affine setting is that projective varieties, unlike
quasi-affine ones, do not sit in larger affine varieties. In fact, it
turns out that the only regular functions defined at all points of a
projective variety are constants. In order to understand
projective varieties, we have to look at them from both a local
and a global point of view.
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