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We have defined the dimension of a variety V to be the
transcendence degree of its function field k(V ). We now give a
more general definition of dimension for an arbitrary Noetherian
ring, agreeing with this one for coordinate rings, that will enable
us to show among other things that a proper subvariety of a
variety always has smaller dimension. We will then study tangent
spaces of algebraic sets.
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Let R be a ring (as always commutative).

Definition; DF, p. 750
The Krull dimension of R, denoted dimR, is the largest integer n
such that there is a chain P0 ⊂ P1 · · · ⊂ Pn of distinct prime ideals
of R; if such chains exist for arbitrarily large n, then we say that R
has infinite dimension and write dimR = ∞.

In the special case where R = k[V ] is the coordinate ring of a
variety V ⊆ Am, any chain P0 ⊂ · · · ⊂ Pn as in this definition
corresponds via the Nullstellensatz to a chain V0 = V ⊃ · · · ⊃ Vn
of distinct subvarieties of V in Am.
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Lemma; cf. DF, Exercise 17, p. 704
If S is an integral extension of R then the Krull dimensions of R and
S coincide.
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Proof.
Given any chain P0 ⊂ · · · ⊂ Pn of distinct prime ideals in R, we
can lift it to a chain Q0 ⊂ · · · ⊂ Qn of prime ideals in S with
Qi ∩ P = Pi by Corollary 50 on p. 720 of DF (proved last time); the
Qi are then distinct because the Pi are. There cannot be distinct
prime ideals Q ⊂ Q′ of S with the same contraction P in R, for if
so (by passing to R/P), we would have a nonzero prime ideal Q
in an integral extension S′ of an integral domain R′ contracting

to 0; but then if x ∈ Q, x ̸= 0, satisfies the equation xn +
n−1∑
i=0

rix i = 0

with the ri in R′, then we cancel a power of x to get r0 ̸= 0,
forcing r0 ∈ Q ∩ R′, a contradiction. Hence dimR = dim S, as
claimed.
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The same proof also shows that if the ring R is such that all
saturated chains P0 ⊂ · · · ⊂ Pn of prime ideals, that is, all strictly
increasing chains of primes such that no distinct prime ideals
can be inserted between two consecutive terms, or at the
beginning or end, have length n, then the same property holds
for S with the same n, equal to the common Krull dimension of R
and S. Next we will show that polynomial rings over fields satisfy
this property.
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More generally, we have

Theorem
Let V ⊂ An be a variety of dimension d. Then any saturated
chain P0 ⊂ · · · ⊂ Pm of prime ideals in k[V ] has length m = d.
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Proof.
By induction on d. If d = 0, then V must be a single point and
the result is obvious. In general, by Noether normalization, the
ring k[V ] is a finite integral extension of a polynomial ring
Pd = k[y1, . . . , yd ]; since we have previously observed that if all
saturated chains of prime ideals in Pd have the same length,
then the same is true of k[V ], with the same length. So we are
reduced to the case where k[V ] ∼= Pd . By repeated applications
of the definition of primeness, any minimal nonzero prime ideal
of k[V ] contains an irreducible polynomial f , and then it must in
fact be the principal ideal (f ), which is indeed prime by unique
factorization. Enlarging the singleton set {f} to a transcendence
base {f1 = f , . . . , fd} of k(V ), we see that {f2, . . . , fd} is a
transcendence base of the quotient field of k[V ]/(f ). An appeal
to the induction hypothesis then completes the proof.
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In particular, applying the Nullstellensatz bijection, we see that
any algebraic set V of km of dimension d admits a chain of
subvarieties V0 ⊂ · · · ⊂ Vd with dimVi = i. Also, any proper
subvariety of a variety V of dimension d has strictly smaller
dimension, since moding out by a nonzero prime ideal always
lowers the transcendence degree of the field of functions. On
the other hand, it is not true in general that any two saturated
chains of prime ideal in k[V ] have the same length if V is not a
variety (think of an algebraic set with two irreducible
components of different dimensions),
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Using more advanced techniques, it can be shown that while
dimR need not be finite for an arbitrary Noetherian ring R we do
have dimR < ∞ if R is Noetherian local. Equivalently, for any fixed
prime ideal P of R, there is an upper bound on the length of any
chain of distinct prime ideals ending at P. The least such upper
bound is called the height of P.
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We see in particular that subvarieties of An of dimension n − 1
have their defining ideals generated by single irreducible
polynomials; such varieties are called hypersurfaces. More
generally, the zero locus of any single polynomial f ∈ Pn is such
that all of its irreducible components have dimension n − 1; there
is one such component for every distinct irreducible factor of f .
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Varieties have many features in common with smooth manifolds;
in fact, the same word “variété” is used in French to mean both
an algebraic variety and a differentiable manifold (with the
adjective “differentiable” sometimes added to it for clarity in the
latter case). In particular, varieties, like manifolds, have tangent
spaces at each of their points. Unlike manifolds, however the
dimension of the tangent space to a variety at a point need not
match the dimension of the variety; at some bad points the
tangent space has higher dimension. To see how this works, we
start with a construction quite reminiscent of one in Math 126.
Recall first that partial differentiation with respect to any variable
xi is defined in any polynomial ring Pn and satisfies the usual sum
and product rules for differentiation. Given f ∈ Pn, v ∈ An set

Dv f (x1, . . . , xn) =
n∑

i=1

∂f
∂xi

(v)xi , a linear polynomial (see DF, p. 723).
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Definition; DF, p. 724
Given a variety V with ideal I and a point v ∈ V , the tangent
space TvV to V at v is the variety Z(I′) where I′ is the ideal
generated by Dv f as f runs through I.

The product rule shows at once that I′ is already generated by
the Dv f as f runs through a set f1, . . . , fm of generators of I.
Defining the Jacobian matrix J(v) of the fi with respect to the
variables x1, . . . , xn, so that the ijth entry of J is ∂fi

∂xj
(v), we can

identify TvV as the kernel of J(v).
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Given a choice of r rows and r columns of J, the determinant of
the corresponding minor matrix of J(v) is a polynomial function,
which is either identically 0 or not. Choosing r as large as
possible so that some choice of r rows and columns makes this
polynomial not identically zero, we see that the rank of J(v) is r
on an open subset U of V and strictly less than r on the
complement C of U in V . The points in U are called nonsingular;
those in C are called singular. Thus varieties differ from manifolds
in that they can have singular points. In Math 126 we would say
of any such point p that the tangent space at p is undefined;
now it is always defined but sometimes has dimension higher
than expected.
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Proposition; p. 724
There is a natural isomorphism from the dual space (TvV )∗ to the
quotient mv/m

2
v of the maximal ideal mv ⊂ k[V ] of functions

vanishing at v by its square.

The function Dv has range kn and vanishes on constant functions
and on functions in M2

v , where Mv is the maximal ideal of Pn
consisting of functions vanishing at v , so it induces an
isomorphism from Mv/M2

v to (kn)∗. Restricting to T ∗
v ,V we get a

surjection D from Mv to T ∗
v ,V , whose kernel is easily seen to be

I + M2
v . The given isomorphism follows at once; we can also

replace mv here by the maximal ideal mv ,V of the local ring Ov ,V
defined last time. Next time we will show that the tangent space
at a generic point has dimension equal to that of the variety.
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