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As previously promised, we prove the Nullstellensatz, using the
Noether Normalization Lemma.
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We begin by recalling the notion of integrality from an earlier
discussion of character theory. Given commutative rings A ⊂ B

we say that b ∈ B is integral over A if we have bn +
n−1∑
i=0

aibi = 0 for

some a0, . . . ,an−1 ∈ A. We have already seen that the set of
elements in B integral over A is a subring containing A; we call it
the integral closure of A in B (DF, p. 691) and denote it by A. The
integral closure of A in B is then just A. An integral domain is
called integrally closed or normal if it is integrally closed in its
quotient field. For example, we previously showed that Z is
integrally closed; the same argument shows that any unique
factorization domain is integrally closed.
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We need a simple lemma.

Proposition; DF, p. 694
If A and B are integral domains with B integral over A (that is,
every element of B integral over A), then A is a field if and only if
B is.

If A is a field and b ∈ B with b 6= 0 satisfies bn +
n−1∑
i=0

aibi = 0, then

by cancelling a suitable power of b we may assume that a0 6= 0,

whence b has the multiplicative inverse −a−1
0 (bn−1 +

n−1∑
i=1

aibi−1).

Conversely, if B is a field, then any a ∈ A with a 6= 0 has a
multiplicative inverse a−1 in B, which must be integral over A, so
that a−n +

∑
i = 0n−1cia−i = 0 for some ci ∈ A. Multiplying by

an−1, we see that a−1 ∈ A, as desired.
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Now we are ready to prove

Theorem; Noether Normalization Lemma; DF, p. 699
Let k be a field and suppose that A = k[r1, . . . , rn] is a finitely
generated k-algebra. Then for some m ≤ n there are elements
y1 . . . , ym algebraically independent over k such that A is integral
and finitely generated as a module over the k-subalgebra
k[y1, . . . , ym].

Proof.
By induction on n. If the ri are already algebraically
independent then there is nothing to prove. Otherwise there is a
nonzero f in the polynomial ring Pn = k[x1, . . . , xn], say of degree
d, with f (r1, . . . , rn) = 0. Renumbering the variables if necessary,
we may assume that f is a nonconstant polynomial in xn with
coefficients in k[x1 . . . , xn−1]. We now change variables,
transforming f into a monic polynomial in xn whose coefficients
lie in a subring of A generated by n− 1 elements.
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Proof.
Define integers αi = (1 + d)i and new variables Xi = xi − xαi

n for
1 ≤ i ≤ n− 1. Let
g(X1, . . . ,Xn−1, xn) = f (X1 + xα1

n , . . . ,Xn−1 + xαn−1
n , xn), so that g is a

polynomial in the Xi and xn. Each monomial term of f
contributes a single term of the form a constant times xe

n to g for
some e. The choice of αi guarantees that different terms of f
give different values of e. Hence if N is the highest power of xn

that occurs in g then we have g = cxN
n +

N−1∑
i=0

hi(X1, . . . ,Xn−1)x i
n for

some nonzero c. Setting si = ri − rαi
n , we get

1
c g(s1 . . . , sn−1, rn) = 1

c f (r1, . . . , rn) = 0, so that rn is integral over
B = k[s1, . . . , sn−1]. Each ri for 1 ≤ i ≤ n− 1 is also integral over
B[rn], so A is integral over B[rn] and thus also over B. An appeal to
the inductive hypothesis completes the proof.
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It follows at once form this lemma and the preceding one that a
finitely generated k-algebra A that is a field is a finite extension
of k , since Noether normalization implies that A is integral over a
polynomial ring k[y1, . . . , ym], which is a field if and only if m = 0.
Then we get

Theorem: Weak Nullstellensatz, DF, p. 700
If k is algebraically closed and I is a proper ideal in a polynomial
ring Pn = k[x1, . . . , xn] then V(I) 6= ∅.
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Proof.
Enlarge I to a maximal ideal M of Pn. Then the coordinate ring
Pn/M is a finitely generated k-algebra that is a field, whence by
algebraic closure it must be isomorphic to k . If the surjection
from Pn to k sends the variable xi to ai ∈ k , then Z(M) is the point
(a1, . . . ,an) ∈ kn, whence Z(M) and Z(I) are nonempty.
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Finally we are ready to prove the full Nullstellensatz.

Theorem: Nullstellensatz
If k is algebraically closed and I ⊂ Pn is a proper ideal, then
I(V(I)) =

√
I. In particular the maps Z, I define inverse

inclusion-reversing bijections between Zariski closed subsets of kn

and radical ideals in Pn.
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Proof.

Clearly
√

I ⊆ I(Z(I)), so it remains to prove the reverse inclusion.
Let f1, . . . , fm be a finite set of generators of I and let g ∈ I(Z(I)).
Introduce a new variable xn+1 and consider the ideal I′

generated by f1, . . . , fm and xn+1g − 1 in Pn+1. At any point of
An+1 where the fi vanish so too does g, whence xn+1g − 1 does
not vanish. Hence Z(I′) = ∅, whence I′ must be all of Pn+1. Now
we have an equation 1 = a1f1 + · · ·+ amfm + am+1(xn+1g − 1) for
some ai ∈ Pn+1. Setting y = 1

xn+1
and multiplying by a high power

of y we get yN = c1f1 + · · ·+ cmfm + cm+1(g − y) for some
ci ∈ k[x1, . . . , xn, y ]. Substituting g for y in this last equation shows
that gN ∈ I = (f1, . . . , fm), so that g ∈

√
I, as desired.
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A side benefit of Noether normalization is that it gives us another
way to compute the dimension of an algebraic set V : writing the
coordinate ring k[V ] as a finitely generated integral extension of
a polynomial ring k[y1, . . . , yd ], we take the dimension of V to be
d. This is justified since if V is irreducible then the quotient field of
k[V ] is a finite extension of the rational function field in d
variables over k , so has transcendence degree d. But now it
turns out that there is more that we can say about the morphism
V → Ad giving rise to the inclusion k[y1, . . . , yd ] ⊂ k[V ].
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As an example of this, consider again the subvariety V of say C2

defined by the equation x3 − y2 = 0. We have seen that the
coordinate ring of V may be identified with the subring
R = C[t2, t3] of S = C[t ]; the inclusion of R into S corresponds to
the morphism t 7→ (t2, t3) of A1(= C) to V , which is bijective. But
we also have the maps S → R sending t to t2, or t to t3; these
correspond to the projections π1, π2 from V onto its first and
second coordinates. These maps are generically two-to-one
and three-to one, respectively, though in both cases there is only
one preimage of 0, namely the origin (0, 0). Thus these maps are
not covering maps of topological spaces; we call them ramified
finite covers, since not all fibers have the same size.
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More generally, we want to study the relationship between
ideals of a ring R and those of a ring S containing R. We call the
ring S an extension of R.If I is an ideal of R then it generates an
ideal Ie = IS of S, called the extension of I; similarly, given an
ideal J of S, its contraction Jc = J ∩ R is an ideal of R. Clearly any
ideal I of R lies in the contraction Iec of its extension to S and any
ideal J of S contains the extension Jce of its contraction to R, but
in general we do not get equality in either case. The contraction
P = Qc of a prime ideal Q in S is prime in R, since the quotient
R/P, as a subring of S/Q, cannot have zero divisors if S/Q does
not. On the other hand, the contraction of a maximal ideal in S
need not be maximal in R; nor is it true that every prime ideal of
R, or even every maximal ideal, is the contraction of some ideal
in S. We focus on maximal ideals here because the
Nullstellensatz implies that maximal ideal in the coordinate ring
k[V ] of an algebraic set V correspond bijectively to points of V .
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If S is integral over R, however, then we have more control over
the situation. Given a prime ideal P of R that is the contraction
Qc of a prime ideal Q of S, we know that P is maximal if and only
if Q is maximal by a previous result, since S/Q is integral over R/P
and both are integral domains. If in addition S is finitely
generated as a ring over R, say by s1, . . . , sm, then given any
homomorphism π from R with kernel P to a field K there are only
finitely many ways to extend π to S, since each generator must
go to a root of a monic polynomial with specified coefficients. It
follows that there are only finitely many ideals Q whose
contraction is a fixed maximal ideal of P of R, all of them
maximal (DF, Corollary 27, p. 695). We will see next time that
there is always at least one such ideal Q.
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