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In this lecture we analyze the structure of the group algebra kG
completely, both as a ring and as a G-module, for every
algebraically closed field k whose characteristic does not divide
the order of G. We will see that G has only finitely many
inequivalent irreducible representations and that they all occur
in kG.
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For any positive integer r , denote by Mr(k) the ring of r × r
matrices over k .

Theorem
For every algebraically closed basefield k whose characteristic
does not divide the order of the finite group G, the group

algebra kG is isomorphic to the direct sum
m⊕

i=1
of finitely many

rings Mni (k). Irreducible kG-modules (up to equivalence) are in
bijection to summands Si = Mni (k) of kG, with the module
Mi = kni corresponding to the summand Si , such that Si acts on
Mi by matrix multiplication by column vectors while the other
summands (even those isomorphic to Si) act by 0. In particular,
kG is isomorphic as a G-module to the direct sum of ni copies of

kni for 1 ≤ i ≤m. The sum
m∑

i=1
n2

i of the squares of the ni equals

the order of G.
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Proof.
Let M be an irreducible G-module of degree d. Let m1, . . . ,me
be linearly independent vectors in M. I claim that
kG(m1, . . . ,me) ⊂ Me is all of Me. I prove this by induction on e,
the base case e = 0 being trivial. If the assertion holds for e < d
and v1, . . . ,ve+1 are independent in M, then the projection of
S = kG(v1, . . . ,ve+1) to the first e coordinates is all of Me. Then
N = {m ∈ M : (0, . . . ,0,m) ∈ S} is a submodule of M; if it is not 0,
then it must be all of M by irreducibility, implying the desired
result. But if N = 0, then for all (m1, . . . ,me) ∈ Me there is a unique
me+1 ∈ M with (m1, . . . ,me+1) ∈ S and the map sending
(m1, . . . ,me) to me+1 is a G-module map.
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Proof.
Its restriction to each copy of M in Me must then be a scalar, by
Schur’s Lemma, whence there are c1, . . . ,ce ∈ k with

me+1 =
e∑

i=1
cimi . This is a contradiction, since (v1, . . . ,ve+1) ∈ S

and the vi are independent. Hence in particular we have
kG(v1, . . . ,vd) = Md for any basis v1, . . . ,vd of M. In a similar way,
if M1, . . . ,Mr are r inequivalent irreducible G-modules, of degrees
n1, . . . ,nr , and for each i we choose a basis vi1, . . . , vini

of Mi ,
then the tuple v whose coordinates are the vij is such that kG(v)
is all of Mn1

1 ⊕ . . .⊕Mnr
r .
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Proof.
This says exactly that kG acts on the direct sum M′ = ⊕iMi as the
sum of matrix rings in the theorem, with Mi

∼= kni . Since the
dimension of kG over k equals the order n of G, we see that
there are only finitely many inequivalent irreducible G-modules
and the sum of the squares of their degrees is at most n. But now
if any x ∈ kG acts by 0 on all irreducible G-modules, then it
would have to do so on kG itself, since kG is the sum of its
irreducible submodules, forcing x = 0. Hence the sum of the
squares of the ni is exactly n, as claimed.
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If we had an explicit isomorphism from kG to the sum of matrix
rings, then we could read off the degrees ni of the irreducible
representations from G. We cannot quite do this, but we will now
see that we can at least compute the number m of irreducible
modules from G.

Theorem: DF, p. 861
The number m of inequivalent irreducible representations of G
equals the number of conjugacy classes in G.
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Proof.
We compute the dimension of the center Z of kG in two different
ways. First, an element of kG is central if and only if it acts on
every irreducible representation of G by a scalar, so that as a
vector space (and as a ring) Z is isomorphic to km. On the other
hand, a combination x =

∑
g∈G cgg is central if and only if

hxh−1 = x for all h ∈ G; but hxh−1 =
∑

g∈G cghgh−1, so that x is
central if and only if cg = chgh−1 for all g,h in G. Thus a basis for Z
is given by the sums sC =

∑
g∈C g of the elements in C as C

ranges over the conjugacy classes in G and m is the number of
such classes.
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The elements sC occurring the preceding proof will soon
reappear in the course; we will use them to say more about the
scalars arising in applications of Schur’s Lemma. For now we will
consider some examples. First, if G is abelian, then all of its
conjugacy classes have just one element, so the number of its
irreducible representations equals the order of G, in accordance
with a previous result. Next, if G is the simplest nonabelian group,
namely the symmetric group S3 on three letters, then it has two
irreducible representations of degree one. One is the trivial
representation on k , where every g ∈ G fixes all elements of k ;
the other is the sign representation, also on k , where g ∈ G acts
by 1 if g is even as a permutation and by −1 if g is odd.
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Since G has just three conjugacy classes, it has just one more
irreducible representation. This must have degree 2, since
|G| = 6 = 22 + 12 + 12. It is easy to identify this representation.
Since G is isomorphic to the symmetry group of an equilateral
triangle, whence its elements may be naturally regarded as real
or complex orthogonal matrices. Working out the entries of
these matrices explicitly, by writing down vertices for the triangle,
we see that they make sense over any algebraically closed field
k of characteristic different from 2 or 3, so that indeed G has an
irreducible representation of degree 2 over k .
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In a similar way, the dihedral group D of order 8 has a natural
irreducible two-dimensional representation over any field
(algebraically closed or not) of characteristic different from 2,
arising from its realization as the symmetries of a square in k2. D
has five conjugacy classes, and accordingly four more
irreducible representations, necessarily of degree 1. Writing x , y
for the generators of D, with x a 90◦ rotation and y any
reflection, we recall that x4 = y2 = 1, yxy = x−1. If we decree
that the 180◦ rotation x2 act trivially on k , then, moding out by
the central subgroup generated by this element, we get the
Klein four-group. Letting the generators of this last group act by
±1, we obtain the four remaining representations of G.
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So far we have studiously avoided working with the matrices
arising from a homomorphism π from G to some GL(V ); but now
the time has come to consider them more carefully. It is too
much, however, to understand such matrices all at once. We
would like to replace a matrix π(g) by a single number χ(g) that
would somehow capture enough information that one could
recover π(g) from it. At first this would seem like a miracle, but it
turns out that we have enough structure in place to perform it.
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Definition: DF, p. 866
Given a representation π : G→ GLn(k), its character χ is the
k-valued function defined by χ(g) = tr π(g), where tr denotes
the trace.

Clearly χ(g) is a class function, meaning that χ(g) = χ(h)
whenever g,h lie in the same conjugacy class in G. Recall that
the trace of any (square) matrix equals the sum of its
eigenvalues and that the eigenvalues of π(g) are all roots of
unity in k . We will continue with character theory next time.
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