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We exhibit some important maps relating the cohomology of a
group G and that of its subgroups H; these lead to an important
constraint on the cohomology of G. For every G-module A we
write down explicit equations describing the first cohomology
group H1(G,A) and relate this group to group extensions of A by
E
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We begin with a definition. Given finite groups G,G′, modules
A,A′ over G,G′, and group homomorphisms
φ : G′ → G, ψ : A→ A′, we say that φ and ψ are compatible if
ψ(φ(g′)a) = g′ψ(a) for g′ ∈ G′,a ∈ A. If this holds then φ and ψ
induce homomorphisms λn : Cn(G,A)→ Cn(G′,A′) for all n,
which commute with the coboundary maps, so that they map
cocycles to cocycles and coboundaries to coboundaries.
Hence we get a homomorphism λn : Hn(G,A)→ Hn(G′,A′). As a
simple example, any G-homomorphism A→ A′ is compatible in
this sense with the identity map on G, so we get a natural map
from Hn(G,A) to Hn(G,A′).
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In particular, if A is a G-module, then A is also a module over any
subgroup H of G; since the inclusion of H into G and the identity
map from A to itself are compatible in this sense, we get a
restriction homomorphism Res: Hn(G,A)→ Hn(H,A) for n ≥ 0,
which on the cochain level just restricts a map in Cn(G,A) to Hn

(DF, p 806). If H is a normal subgroup of G and A is a G-module,
then the H-fixed subgroup AH of A is a module for the quotient
group G/H. The projection G→ G/H and the inclusion of AH into
A are then compatible, so that we get an inflation
homomorphism Inf: Hn(G/H,AH)→ Hn(G,A) for n ≥ 0.
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Now let H be a subgroup of G of index m and A a G-module.
Let g1, . . . ,gm be representatives for the left cosets of H in G.

Define a map ψ : MG
H (A)→ A via f 7→

m∑
i=1

gi · f (g−1
i ). If we change

any coset representative gi to gih then
(gih)f ((gih)−1 = gihf (h−1g−1

i ) = gihh−1f (g−1
i ) = gi f (g

−1
i ). so the

map ψ is independent of the choice of coset representatives; it
is also easily seen to be a G-homomorphism. By Shapiro’s
Lemma we have an isomorphism Hn(G,MG

H (A)) ∼= Hn(H,A), so by
composing the two homomorphisms we get the corestriction
homomorphism Cor: Hn(H,A)→ Hn(G,A) (DF, p. 806). For a
cocycle f ∈ homZH(Pn,A) representing a cohomology class
c ∈ Hn(H,A) (arising from a projective resolution {Pn} of Z over H)
we have that Cor(f ) ∈ homZG(Pn,A) is defined by

Cor(f )(p) =
m∑

i=1
gi f (g

−1
i p).
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Then we have

Proposition 26, DF, p. 807
If H is a subgroup of G of index m, then the composite Cor◦Res is
multiplication by m.

This follows at once from the formula for Cor(f )(p) given above,
since if f is a G-homomorphism, then all terms in the sum for
Cor(f )(p) are equal to Cor(f )(p). As an immediate
consequence (taking H = 1) we get that given a finite group G
of order m we have mHn(G,A) = 0 for all n ≥ 1, so that Hn(G,A)
is a torsion abelian group. Moreover, if A is finite abelian with |A|
and m relatively prime, then it follows from this and a previous
result that Hn(G,A) = 0 for all n ≥ 1.
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Turning now to the first cohomology group H1(G,A), it follows
from the definitions of Z1(G,A) and B1(G,A) that f : G→ A is a
cocycle if and only if f (gh) = f (g) + gf (h) for all g,h ∈ G (using
additive notation for A). We call such f crossed
homomorphisms); note that if G acts trivially on A, then crossed
homomorphisms are just ordinary group homomorphisms from G
into A. Plugging in g = 1, we see that this condition forces
f (1) = 0. A 1-cochain f is a coboundary if and only if there is
a ∈ A with f (g) = ga − a; crossed homomorphisms with this
property are called principal.
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As an example, let G be the Galois group of a finite Galois
extension K of F ; take A to be the multiplicative group K ∗. A
simple calculation (see DF, p. 814) shows that H1(G,K ∗) = 0. (The
same result holds even for infinite Galois extensions, but it does
not extend to the higher cohomology groups Hn(G,K ∗)). In
particular, if G is cyclic with generator σ, then in view of a
previous computation of H1 for cyclic groups this computation
shows that α ∈ K ∗ has norm 1 (that is, the product of its
conjugates under G is 1) if and only if α = σ(β)/β for some β ∈ K ∗.
If the field F has m distinct mth roots of 1, where m = |G|, then a
primitive mth root εm of 1 in F has norm 1, whence there is β ∈ K ∗

with σ(β) = βεm. It easily follows that K is an mth root extension of
F (it is generated by β and βm ∈ F).
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This is an important step in the proof that in characteristic 0, a
polynomial with solvable Galois group is solvable by radicals. The
corresponding fact in characteristic p > 0 is that a Galois
extension K of degree p is an extension by some β with
βp − β ∈ F ; here one looks at the cohomology group H1(G,K ) of
G with coefficients in the additive group K . In this case a
polynomial with solvable Galois group need not be solvable by
radicals alone.
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Our main application of H1(G,A) is to group extensions; the
cohomological theory of these is quite similar to that of module
extensions. Given a group G and a G-module A, an extension of
G by A is a short exact sequence 1→ A→ E → G→ 1 of groups.
(Note that exactness forces the image of A in E to be a normal
subgroup.) We identify two extensions 1→ A→ E → G→ 1 and
1→ A→ E ′ → G→ 1 whenever there is an isomorphism π : E → E ′

restricting to the identity map on the copy of A sitting inside E
and commuting with the projection maps π : E → G, π′ : E ′ → G.
For now we consider only split extensions, that is, ones for which
there is a homomorphism σ : G→ E such that the composite πσ
is the identity on G. Such a σ is called a splitting and its image a
complement to A in E.
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In this case we identify E with the semidirect product A o G,
consisting of all ordered pairs (a,g) ∈ A×G with multiplication
given by (a,g)(b,h) = (a + gb,gh) (recalling once again that
the group operation is written multiplicatively in E and G but
additively in A). Now consider the set of all splittings σ. Any such
sends g ∈ G to (f (g),g) for some f : G→ A; since
(f (g),g)(f (h),h) = (f (g) + gf (h),gh) the condition that σ be a
homomorphism is equivalent to requiring that f ∈ Z1(G,A).
Composing σ with conjugation by (a, 1) for any a ∈ A then
amounts to replacing f by f + a − ga, that is, altering f by a
1-coboundary.
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Reformulating the above discussion slightly, we obtain

Theorem, DF, Proposition 33, p. 820
Given a semidirect product E = A o G (with fixed action of G on
A) there is a bijection between E-conjugacy classes of
complements to A in E and H1(G,A).

Proof.
A complement to A in E necessarily takes the form
{(f (g),g);g ∈ G} for some f : G→ A; we have seen that such a
function must be a 1-cocycle. As such a complement is stable
under conjugation by any of its elements, its E-conjugacy classes
are the same as its A-conjugacy classes, which we have shown
to be in bijection to H1(G,A).
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For example, let G = Z/2Z act on A = Z/4Z by inversion (the
unique nontrivial element of G sends every element of A to its
inverse). The semidirect product E = A o G is then the dihedral
group D of order 8; the subgroup A consists of the rotations in D.
The complements of A in E are then the cyclic subgroups
generated by reflections in D. There are two conjugacy classes
of such reflections; accordingly, H1(G,A) is cyclic of order 2. This
agrees with the earlier computation of the cohomology groups
of a cyclic group. This example is discussed on p. 820.
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As an immediate consequence we get

Corollary, DF, p. 821
Given a semidirect product E = A o G with A abelian and the
order of G relatively prime to that of A, all complements of A in E
are A-conjugate.

This follows since we saw above that Hn(G,A) = 0 for n ≥ 0 in this
situation.
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