Lecture 4-26: Group cohomology

April 26, 2024

[Lecture 4-26: Group cohomology](#page-0-0) **April 26, 2024** 1/1

Þ

イロト イ押 トイヨ トイヨ トー

 299

I will pick up from the definition of the cohomology groups $H^n(G, A)$ of a finite group G with coefficients in a G-module A, given last time. Such groups, like complex representations, are interesting in their own right; they also yield important purely group-theoretic information.

 Ω

画

Note that G-modules A have a very different flavor from representations of G over a field K . In particular, since free Z-modules are never semisimple our focus will not be on irreducible modules but rather on the way that the submodule A^G of G-invariants in A (consisting of all $a \in A$ fixed by every $q \in \mathcal{G}$) sits inside A.

 Ω

イロト イ何 ト イヨ ト イヨ トー

As mentioned last time, we define $H^n(G,A)$, the n th cohomology group of G with coefficients in A, to be the Ext group $\mathsf{Ext}^n_{\mathbb{Z} G}(\mathbb{Z},A)$, where $\mathbb Z$ is the trivial $\mathbb Z G$ -module (on which every $g \in G$ acts trivially). See p. 800 of DF. Thus we can compute these groups using any convenient projective resolution of $\mathbb Z$. For example, if G is cyclic of order m with generator σ , then we have a resolution

$$
\cdots \to \mathbb{Z} G \to \mathbb{Z} G \to \cdots \to \mathbb{Z} G \to \mathbb{Z} \to 0
$$

where the maps from ZG to itself alternate between multiplication by $\sigma - 1$ and multiplication by $N=1+\sigma+\cdots+\sigma^{n-1}$, and the map from $\mathbb{Z} G$ to \mathbb{Z} is the augmentation map sending \sum_{G} z $_{g}$ g to \sum z $_{g}$.

D.

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A}$

Arguing as in the computation of Ext $^n_{\mathbb{Z}/m\mathbb{Z}}(\mathbb{Z}/d\mathbb{Z},D)$ on April 22, we see that

$$
H^{n}(G, A) = \begin{cases} A^{G} & \text{if } n = 0\\ A^{G}/NA & \text{if } n \text{ even}, n \ge 2\\ nA/(\sigma - 1)A & \text{if } n \text{ odd}, n \ge 1 \end{cases}
$$

where $_N A$ is the subgroup of A sent to 0 by N. In particular, if G acts trivially on A, then $Na = ma$ for all $a \in A$, so that $H^0(\mathit{G},\mathit{A})=\mathit{A},$ $H^n(\mathit{G},\mathit{A})=\mathit{A}/m\mathit{A}$ for even $n\geq 2$, while $H^{n}(G, A) = {}_{m}A$, the elements of A sent to 0 by m, for n odd.

 Ω

イロト イ何 トイヨ トイヨ トーヨー

For more complicated groups G the standard projective resolution of Z arising in this week's HW (called the bar resolution) gives a uniform recipe for computing $H^n(G, A)$. Since this is a free resolution it is easy to compute hom_{$\mathbb{Z}_G(F_n, A)$ for all A. We are} then led to the following direct definition of $H^n(G,A)$ (making no reference to Ext groups or projective resolutions).

 Ω

Denote by $C^n(G,A)$ the set of all maps from G^n to A for $n>0$ and set $C^0(\mathit{G},\mathit{A})=\mathit{A}$. The elements of $C^n(\mathit{G},\mathit{A})$ are called homogeneous n-cochains of G (with values in A). For $n > 0$ define d_0 , the n th coboundary homomorphism from $C^n(G,A)$ to $C^{n+1}(G,A)$ via

$$
d_n(f)(g_1,\ldots,g_{n+1}) = g_1 \cdot f(g_2,\ldots,g_{n+1})
$$

+
$$
\sum_{i=1}^n (-1)^i f(g_1,\ldots,g_{i-1},g_i g_{i+1},\ldots,g_{n+1})
$$

+
$$
(-1)^{n+1} f(g_1,\ldots,g_n)
$$

 Ω

 \Rightarrow

イロト イ母 トイヨ トイヨ トー

One can then check (with some effort) that the composition d_0d_{n-1} is 0, so that it makes sense to form the quotient $\mathsf{Z}^n({G},\mathsf{A})/\mathsf{B}^n({G},\mathsf{A})$ of the kernel $\mathsf{Z}^n({G},\mathsf{A})$ of d_n (the $n\text{-cocycles}$) by the image $\mathcal{B}^n(G,A)$ of d_{n-1} (the n -coboundaries). This quotient is then equal to $H^n(G, A)$.

This formulation is frankly not all that useful for computing $H^{n}(G, A)$; the point of it is instead to interpret these groups. We will see that in particular we can use the first and second cohomology groups to compute group-theoretic information. For now we just observe that if $mA = 0$ for some integer m, then $mZ^{n}(G, A) = 0$ for all n, so that $mH^{n}(G, A) = 0$ also. Corresponding to the long exact sequence for Ext groups arising from a short exact sequence of R-modules we get

 QQ

 $\mathcal{A} \subseteq \mathcal{A} \times \{ \mathcal{B} \} \times \{ \mathcal{B} \times \{ \mathcal{B} \} \times \{ \mathcal{B} \} \times \{ \mathcal{B} \}$

Theorem 21, DF, p. 802

Given a short exact sequence $0 \to A \to B \to C \to 0$ of G-modules we get a long exact sequence

$$
0 \to A^G \to B^G \to C^G \to H^1(G, A) \to H^1(G, B) \to H^1(G, C) \to \cdots
$$

of abelian groups.

Here the connecting homomorphisms $\delta_{n}:H^{n}(G,C)\rightarrow H^{n+1}(G,A)$ are those of the long exact sequence for Ext.

 Ω

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Next we introduce the analogue of the induced representation construction.

Definition, DF, p. 803

If H is a subgroup of G and A is an H-module, then we define the coinduced module to be $M = M_H^G(A) = \text{hom}_{\mathbb{Z}H}(\mathbb{Z}G, A)$, where the action of G is given by $g \cdot f(x) = f(xg)$ if $f \in M, g \in G$.

We also have $M \cong \mathbb{Z}G \otimes_{\mathbb{Z}H} A$ (since G is finite; but see next week's HW assignment for a counterexample in general), so M is also often called the module induced from A.

Proposition: Shapiro's Lemma, DF, p. 804

For any subgroup H of G and H-module A we have $H^n(G, M_H^G(A)) \cong H^n(H, A).$

 QQ

Proof.

Set $M = M_H^G(A)$. The bar resolution of $\mathbb Z$ over G is a free resolution which remains free over H, since $\mathbb{Z}G$ is a free $\mathbb{Z}H$ -module. Taking G-homomorphisms into M we get a cochain complex whose cohomology groups are the groups $H^n(G.M)$. But now for any G-module P there is a natural isomorphism Φ : hom_{ZG}(P, hom_{ZH}(ZG, A)) ≅ hom_{ZH}(P, A) of abelian groups defined by $\Phi(f)(p) = f(p)(1)$. Since this isomorphism commutes with the coboundary maps it induces an isomorphism between

the corresponding cohomology groups, as desired.

This is the analogue of Frobenius Reciprocity for coinduced modules.

 Ω