Lecture 4-24: Ext groups, module extensions, and group cohomology

April 24, 2024

Lecture 4-24: Ext groups, module extensior

• • • • • • • • • • •

We will show that Ext groups are well defined (independent of the choice of projective resolution) and derive some long exact sequences. We then define group cohomology, using a particular projective resolution of a trivial *G*-module.

イロト イポト イヨト イヨト

We first prove

Proposition (DF, p. 782)

Using the same notation as last time, given a homomorphism $f : A \to A'$ of *R*-modules, the induced maps $\phi_n : \operatorname{Ext}^n_R(A', D) \to \operatorname{Ext}^n_R(A, D)$ depend only on *f*, not on the choice of lifts f_n used to define these maps.

Proof.

For this it is enough to show that if f is the zero map, then the induced maps are all zero as well. If f = 0 then by projectivity of the P_i one can inductively define homomorphisms $s_n: P_n \to P'_{n+1}$ such that $f_n = d'_{n+1}s_n + s_{n-1}d_n$. The collection of maps $\{s_n\}$ is called a chain homotopy between the chain homomorphism given by the f_p and the zero homomorphism. Taking homomorphisms into D we get the diagram used to determine the ϕ_n , together with additional diagonal arrows representing a chain homotopy between cochain complex homomorphisms. Using these diagonal maps, it is easy to see that any element in $\hom_{R}(P'_{D}, D)$ representing a coset in $\operatorname{Ext}_{P}^{n}(A', D)$ maps to the zero coset in $\operatorname{Ext}_{P}^{n}(A, D)$, as claimed.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Now we can finally prove the independence result promised last time.

Theorem (DF, p. 782)

The groups $\operatorname{Ext}_{R}^{n}(A, D)$ depend only on A and D.

Indeed, given two projective resolutions $\{P_i\}, \{P'_i\}$ of A and the lifts f_n of the identity map $f : A \to A' = A$, the resulting maps ϕ_n from $\operatorname{Ext}_R^n(A, D)$ (computed via the P_i) and $\operatorname{Ext}_R^n(A', D)$ (computed via the P_i) admit maps $\phi_n : \operatorname{Ext}_R^n(A', D) \to \operatorname{Ext}_R^n(A, D)$ such that the composites $\phi'_n \phi_n$ are induced from the identity map from A to A. These composites are also identity maps, by the previous result, and the assertion follows.

<ロ> (四) (四) (三) (三) (三)

Given a short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of *R*-modules and projective resolutions of *L* and *N*, say by $\{P_i\}$ and $\{P'_i\}$, respectively, it is not difficult to construct a projective resolution of *M* by $\{Q_i = P_i \oplus P'_i\}$ (DF p. 783) such that the resolutions of *L*, *M*, *N* fit into a short exact sequence of chain complexes. Taking homomorphisms into another *R*-module *D* and the corresponding long exact sequence in cohomology, we get a sequence

$$0 \rightarrow \hom_{\mathcal{R}}(D,L) \rightarrow \hom_{\mathcal{R}}(D,M) \rightarrow \hom_{\mathcal{R}}(D,N) \xrightarrow{\gamma_0} \operatorname{Ext}^1_{\mathcal{R}}(D,L)$$

$$\rightarrow \operatorname{Ext}^{1}_{R}(D, M) \rightarrow \operatorname{Ext}^{1}_{R}(D, N) \rightarrow \cdots$$

called the long exact sequence for Ext.

In particular, it follows from this sequence and the trivial projective resolution $\cdots \rightarrow 0 \rightarrow P \rightarrow P \rightarrow 0$ of any projective module *P* that an *R*-module *P* is projective if and only if $\operatorname{Ext}^{1}_{R}(P,B) = 0$ for all *R*-modules *B*, or if and only if $\operatorname{Ext}^{n}_{R}(P,B) = 0$ for all *R*-modules *B* and all $n \geq 1$.

The notation Ext here stands for "extension". An extension of an *R*-module *N* by another one *L* is a short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of *R*-modules. Given two such extensions, say

 $0 \to L \to M \to N \to 0$

$$0 \to L \to M' \to N \to 0$$

we say they are equivalent if there is an isomorphism $f: M \to M'$ making the above diagram commute when supplemented by the identity maps from L and N to themselves (DF p. 381). For example, taking $R = \mathbb{Z}$ and letting p be a prime, there is just one equivalence class of extensions of $L = \mathbb{Z}/(p)$ by itself with middle term isomorphic to $E = \mathbb{Z}/(p) \oplus \mathbb{Z}/(p)$, since the automorphism group of E, consisting of all 2×2 invertible matrices over $\mathbb{Z}/(p)$, is large enough to identify any two such extensions. On the other hand, there are p-1 inequivalent extensions of L with middle term $E' = \mathbb{Z}/(p^2)$, for if we fix the embedding of L into E' sending the coset of i mod p to that of pimod p^2 , then there are p-1 inequivalent ways to map E' onto L so as to complete the short exact sequence. These are indexed by the nonzero elements i of L, the ith one sending the coset of x to that of *ix* mod *p*.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Thus there are in all p inequivalent extensions of L by itself. It is no coincidence that $Ext_{\pi}^{1}(L, L)$ is cyclic of order p (by a previous calculation), as it is known in general that there is a bijection between $\operatorname{Ext}_{P}^{1}(N, L)$ and equivalence classes of extensions of N by L (Theorem 12, DF, p. 787). In this bijection the zero element of the Ext group corresponds to the split extension $L \oplus N$. More generally, for any $n \ge 1$ there is a notion of equivalence class of *n*-extensions of N by L, that is, equivalence classes of exact sequences $0 \rightarrow L \rightarrow M_n \cdots \rightarrow M_1 \rightarrow N \rightarrow 0$ and a bijection due to Yoneda between the *n*th Ext group $Ext_{P}^{n}(N, L)$ and such extensions. There is also the structure of an additive group on equivalence classes of extensions corresponding to the additive aroup structure on Ext^{1} .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

We conclude with a quick definition of group cohomology, so that you can get started on one of the problems in this week's homework. Given a finite group G, let $F = \mathbb{Z}G$ be its integral group ring, defined in the same way as the group algebra $\mathbb{C}G$, except that integers rather than complex numbers are used as coefficients. Then an F-module is just an abelian group A (or \mathbb{Z} -module) on which G acts by automorphisms. There is a standard resolution of \mathbb{Z} , the trivial G-module, with *n*th term $F_n = \otimes^{n+1} F$, the (n+1)st tensor power of F, which is a free *F*-module with basis $1 \otimes g_1 \otimes \cdots \otimes g_n$ as the g_i range over *G*. Here G acts by multiplication on the leftmost copy of F.

イロン イ理 とくほ とくほ とう

Denoting this basis element by (g_1, \ldots, g_n) we have the following recipe for the *n*th coboundary operator d_n on F_n :

$$d_n(g_1, \dots, g_n) = g_1 \cdot (g_2, \dots, g_n) + \sum_{i=1}^{n-1} (-1)^i (g_1, \dots, g_{i-1}, g_i g_{i+1}, \dots, g_n) + (-1)^n (g_1, \dots, g_{n-1})$$

In Exercise 1 on p. 809 of this week's HW you will use a *contracting homomorphism* and the *augmentation map* defined there to show that the sequence

 $\dots \to F_n \to F_{n-1} \to \dots \to F_0 \to \mathbb{Z} \to 0$ is exact, so that this is indeed a projective resolution of \mathbb{Z} , which can be used to compute $\operatorname{Ext}_F^n(\mathbb{Z}, A)$. This last group is by definition the *n*th cohomology group $H^n(G, A)$. More to come!

・ロン ・四マ・ キョン ・ ヨー