Lecture 4-19: Hook formula and symmetric functions

April 19, 2024

[Lecture 4-19: Hook formula and symmetric functions](#page-0-0) April 19, 2024 1/1

 QQQ

 $\leftarrow \mathbb{B}$

 $($ \Box $)$ $($ \Box $)$

Whole books are written and whole courses devoted to the representations of the symmetric group; while I cannot go into depth on this topic, there are couple of additional topics that I would like to mention. I will give a beautiful formula for the number of standard tableaux of a fixed shape and give an inkling of the many connections between the symmetric group and symmetric polynomials.

イロメ イ何 メ イヨメ イヨメー

Given a Young diagram, each box in it corresponds to a hook, consisting of itself and all boxes either directly below it or directly to its right; its length is the number of boxes in it. For example, starting with the partition $\lambda = (3, 2, 1)$, I have labelled each box in the corresponding Young diagram by the length of its hook below.

5 3 1 3 1 1

Then we have

Hook length formula

If $n = |\lambda|$, then the number of standard tableaux of shape λ equals n! divided by the product of the hook lengths in the Young diagram of λ .

Thus for example we have dim $S^{(3,2,1)} = \frac{6!}{5 \cdot 3 \cdot 1 \cdot 3 \cdot 1} = 16$.

 QQ

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \times \end{array} \right.$

Many proofs of this result have been given since the original one in 1954 by Frame, Robinson, and Thrall, which used the representation theory of S_n in prime characteristic. A straightforward proof by induction is given in Fulton's book, together with a heuristic argument which can be converted to a rigorous probabilistic proof. More recently Pak and others have given a geometric proof, by computing the n-dimensional volume of a certain polytope.

画

イロト イ母 トイヨ トイヨ トー

It turns out that the representations of S_n as n varies fit together in a beautiful way. To see how this works, let R_n be the free $\mathbb Z$ -module spanned by the irreducible characters of S_n . Make the direct sum $R = \stackrel{\infty}{\bigoplus} R_n$ into a graded ring by decreeing that the $n=0$ product $\chi \circ \mu$ of the irreducible characters χ, μ of S_m, S_n , respectively, be the induced character Ind $\frac{S_{m+n}}{S_m \times S_n} \chi \times \mu$ of S_{m+n} , where $\chi \times \mu$ is regarded as a character of the direct product $S_m \times S_n$ via $\chi \times \mu(g, h) = \chi(g)\mu(h)$ and $S_m \times S_n$ is embedded in S_{m+n} in the obvious way. A straightforward argument using the transitivity of induction (Proposition 14 in DF, p. 898) shows that multiplication in R is associative and commutative.

 Ω

画

K ロ ト K 何 ト K ヨ ト K ヨ ト

The ring R then turns out to be isomorphic to a well-known ring Λ arising in a different context. Recall that a polynomial $p \in \mathbb{Z}[x_1,\ldots,x_n]$ is called symmetric if it remains unchanged when the variables are permuted: $\rho(x_1,\ldots,x_n)=\rho(x_{\sigma(1)},\ldots,x_{\sigma(n)}$ for all $\sigma \in S_n$. Note that p is symmetric if and only if the sum h_i of its monomial terms of degree *i* is symmetric for all *i*. A symmetric function $\boldsymbol{\mathsf{p}}=(\boldsymbol{\mathsf{p}}_1,\boldsymbol{\mathsf{p}}_2,\ldots)$ is then a tuple of symmetric polynomials ρ_i in x_1,\ldots,x_i , such that $\rho_j(x_1,\ldots,x_i,0\ldots,0)=\rho_i(x_1,\ldots,x_i)$ for all indices *i*, *j* with *i < j*. For example, $\rho = (\rho_1, \rho_2, \ldots)$ has this property if we set $p_i = x_1 + \ldots + x_i.$ It is clear that the sum and .
product of symmetric functions are symmetric. Thus $\Lambda = \overset{\infty}{\bigoplus} \Lambda_n$ $n=0$ has the structure of a commutative graded ring, where Λ_n denotes the set of homogeneous symmetric functions of degree n.

 Ω

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

To any partition λ one can attach a symmetric function, as follows. We first broaden the definition of Young tableau, now declaring any filling of the boxes in a Young diagram by positive integers to be such a tableau. We say that the tableau T is semistandard if the numbers in the boxes increase weakly across the rows but strictly down the columns. For every semistandard tableau I denote by x^I (the *weight* of I) the monomial $x_1^{G_1}$ $x_1^{a_1} \ldots x_m^{a_m}$, where the exponent a_i counts the number of times i appears in T. Then the Schur polynomial $s_{\lambda,m}$ in m variables is defined to be the sum $\sum_I x^I$ as I runs over the semistandard tableaux using only the numbers 1 through m (but not necessarily all of them).

 QQ

÷,

K ロ ト K 何 ト K ヨ ト K ヨ ト

For example, if λ has a single part *n*, then $s_{\lambda,m}$ is the *n*th complete symmetric polynomial $h_n(x_1, \ldots, x_m)$, equal to the sum of all monomials in x_1, \ldots, x_m of total degree n. If instead $\lambda = (1, \ldots, 1)$ with n ones, then $s_{\lambda,m}$ equals $e_n(x_1, \ldots, x_m)$, the nth elementary symmetric polynomial in x_1, \ldots, x_m , equal to the sum of all products of n distinct variables among the x_i ; note that $e_n(x_1, \ldots, x_m) = 0$ if $m < n$.

 Ω

D.

イロト イ母 トイヨ トイヨ トー

We further have $s_{(2,1),1} = 0$, since there are no semistandard tableaux of shape (2, 1) using only the number 1, while $s_{(2,1),2} = x_1^2 x_2 + x_1 x_2^2$. The coefficient of $x_1 x_2 x_3$ in $s_{(2,1),3}$ is 2, since there are two standard tableaux of shape (2, 1). As indicated by (but certainly not obvious from) the examples so far, it turns out that $s_{\lambda,i}$ is symmetric for every λ and i , whence $s_\lambda=(s_{\lambda,1},s_{\lambda,2},\ldots)$ is a symmetric function, called the Schur function s_λ corresponding to λ .

イロト イ押 トイヨ トイヨ トーヨー

The connection between characters of S_n and symmetric functions is then established by the following fundamental result.

Theorem: Fulton, Chapter 7

The graded rings R and Λ are isomorphic by the map sending the character χ_λ of the Specht module S^λ (lying in $R_\textsf{n}$) to $\mathsf{s}_\lambda\in\mathsf{\Lambda}_\textsf{n}.$

 Ω

This result is particularly remarkable since most of the tableaux T involved in the definition of s_{λ} are not standard and play no role in the definition of $S^\lambda.$ The theorem mostly has to do with the representation theory of the infinite group $GL_n(\mathbb{C})$, which involves semistandard tableaux in a crucial way. The connection to S_n amounts to a side benefit.

 Ω

By working with semistandard tableaux one can deduce the following restriction formula for representations of S_n .

Theorem: restriction formula

Given a partition λ of *n,* the restriction of the Specht module S^λ to \mathcal{S}_{n-1} as the sum $\sum \mathcal{S}^{\lambda'}$ as λ' runs through the partitions whose diagrams are obtained from that of λ by deleting one box. In particular, this restriction is irreducible if and only if the diagram of λ is a rectangle (all rows have the same length).

 Ω

イロト イ押ト イヨト イヨトー

If one restricts S^{λ} to S_{n-1} , then to S_{n-2} , and so on, all the way to \mathcal{S}_1 , one obtains the sum of $f^\lambda = \dim S^\lambda$ copies of the trivial representation. So f^λ equals the number of ways to reduce the diagram D_{λ} of λ to a single box by removing one box at a time, making sure that resulting shape is always a diagram. Now the boxes that can be removed from D_{λ} at the first step are exactly those which can be filled by the largest number n in a standard tableau of shape λ , and similarly for the boxes that can be removed at the subsequent steps.

 QQ

イロト イ母 トイヨ トイヨ トー

In this way we recover the earlier result that $\dim S^\lambda$ equals the number of standard tableaux of shape λ . We conclude with the induction analogue of the restriction formula: the representation induced from \mathcal{S}_n to \mathcal{S}_{n+1} by \mathcal{S}^λ is the sum $\sum \mathcal{S}^{\lambda^n}$ as λ^n runs over the partitions whose diagrams are obtained from D_{λ} by adding one box, possibly forming a new row by itself.

 Ω

イロト イ押ト イヨト イヨトー