Lecture 4-17: Specht modules and standard tableaux

April 17, 2024

Lecture 4-17: Specht modules and standa

• • • • • • • • • • •

Given a partition λ of n, last time we defined the Specht module of S_n corresponding to λ to be the span of the $v_T = b_T \cdot \{T\}$ as Truns over all tableaux with shape λ , where $b_T = \sum_{q \in C(T)} \epsilon_q q$, where ϵ_q denotes the sign of q and $\{T\}$ the tabloid of T. We showed that $b_T v_T \neq 0$ and that $b_T \{T'\} \in \mathbb{Q} v_T$ for any tabloid $\{T'\}$ if T' has shape λ . Hence $b_T M^{\lambda} = b_T S^{\lambda} = \mathbb{Q} v_T \neq 0$, while $b_T M^{\lambda'} = 0$ if $\lambda' > \lambda$.

Theorem

The Specht modules S^{λ} are irreducible, as are their complexifications $S^{\lambda}_{\mathbb{C}}$ (obtained by replacing the basefield \mathbb{Q} by \mathbb{C}). Every irreducible complex representation of S_n is isomorphic to $S^{\lambda}_{\mathbb{C}}$ for a unique partition λ of n.

Proof.

Irreducibility over either \mathbb{C} or \mathbb{Q} is equivalent to indecomposability. If we had $S^{\lambda} = V \oplus W$, then $\mathbb{Q}v_{T} = b_{T}S^{\lambda} = b_{T} \cdot V \oplus b_{T} \cdot W$, forcing one of V or W, say V, to contain v_{T} , whence $V = \mathbb{Q}S_{n}v_{T} = S^{\lambda}$ and S^{λ} is irreducible; similarly so is $S_{\mathbb{C}}^{\lambda}$. Since < is a total order on tableaux, no two S^{λ} are equivalent, by the above formulas for $b_{T} \cdot M^{\lambda}$. Since the number of S^{λ} matches the number of conjugacy classes in S_{n} , we have found all of the irreducible complex representations of S_{n} .

From this it can be shown that the rational group algebra $\mathbb{Q}S_n$ is isomorphic to a sum of matrix rings $M_{n_i}(\mathbb{Q})$, in the same way that $\mathbb{C}S_n$ is a sum of matrix rings $M_{n_i}(\mathbb{C})$.

イロン イ理 とくほ とくほ とう

Now we want to work out the degree of S^{λ} . We first show that this degree is at least the number f^{λ} of standard tableaux of shape λ .

Proposition

For fixed λ the elements v_T are linearly independent as T runs through the standard tableaux of shape λ .

Proof.

We mention that the argument in Chapter 7 of Fulton is inadequate, using only as it does the previously defined total order on tableaux. Instead one needs a total order \prec on tabloids $\{T\}, \{T'\}$ of shape λ , defined by decreeing that $\{T\} \prec \{T'\}$ if the largest number occurring in different rows occurs higher in $\{T\}$ than in $\{T'\}$. By the remark after Lemma 1 of the last lecture, we have $\{q \cdot T\} \prec \{T\}$ if T is standard and $q \in C(T)$. Thus for T standard each v_T is a combination of tabloids of which the \prec -largest term is $\{T\}$. The independence of such v_T then follows at once by considering the ≺-maximal term occurring with nonzero coefficient in a dependence relation.

ヘロン ヘアン ヘビン ヘビン

Now we want to show that the v_T for T standard also span S^{λ} . To do this we need a different presentation of S^{λ} , realizing it as a quotient rather than a submodule of an S_n -module. We therefore define a column tabloid [T] to be an equivalence class of tableaux $\pm T$ with signs attached, where $\pm T$ is identified with $\pm(\epsilon_{q}T)$ whenever $q \in C(T)$. There is an obvious action of S_{p} on column tabloids of shape λ and thus on the space $ilde{M}^{\lambda}$ spanned by them; the definitions of [7] and v_7 show that the map $\alpha: \tilde{M}^{\lambda} \to S^{\lambda}$ sending [7] to v_{T} is a well defined surjective S_n -module map.

It turns out that there are certain operations $\pi_{j,k}$ on column tabloids which are such that the differences $[T] - \pi_{j,k}[T]$ span the kernel of α . Here the parameter *j* is a column of *T* lying to the left of its rightmost column and *k* is a positive integer at most equal to the length of the (j + 1)st column of *T*. Then $\pi_{j,k}[T]$ is the sum of the column tabloids [*S*] obtained from [*T*] by interchanging the top *k* numbers in the (j + 1)st column with all possible subsets of *k* numbers in the *j*th column, preserving the vertical order of these elements throughout.

イロン イロン イヨン イヨン 三日

For example,

$$\pi_{1,2} \begin{pmatrix} 1 & 2 \\ 4 & 3 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 4 & 5 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

<ロ> <四> <四> <三</p>

For the proof that the differences $[T] - \pi_{j,k}[T]$ span the kernel of α , see Chapter 7 of Fulton's book; it is not difficult but a bit too much of a digression to include here. We now introduce one more total ordering, this time on column tabloids (the last one, I promise!) We decree that $[T] \succ [T']$ if in the rightmost column where [T], [T'] differ, the lowest box which has different entries after both columns are rearranged in increasing order is larger in [T] than in [T']. Then we have

Lemma 3: straightening law

If S is a nonstandard tableau of shape λ then by repeatedly using the relations $[T] = \pi_{j,k}[T]$ (for various j, k) we can write [S] as a combination of $[T_i]$ where the T_i are standard.

ヘロン 人間 とくほ とくほ とう

Proof.

First, we may rearrange the columns of *S* are in increasing order, possibly changing [*S*] by a sign. If *S* is still not standard, then suppose that the *k*th number in the *j*th column is larger than the *k*th number in the (*j* + 1)st column. Applying $\pi_{j,k}$ to *S*, we find that all column tabloids appearing are larger than [*S*] in the ordering, so iteration of this process equates [*S*] to a combination of the desired form.

・ロト ・同ト ・ヨト ・ヨ

For example, taking j = k = 1, we find that

$$\begin{pmatrix} 2 & 1 \\ 3 & \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & \end{pmatrix} + \begin{pmatrix} 2 & 3 \\ 1 & \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & \end{pmatrix} - \begin{pmatrix} 1 & 3 \\ 2 & \end{pmatrix}$$

Hence the v_T for T standard provide a basis of the Specht module S^{λ} and its dimension equals the number f^{λ} of standard tableaux of shape λ . Also we see that the Specht module S^{λ} can in fact be defined over the integers, so that every representation π of S_n is equivalent to one whose range lies in $GL_n(\mathbb{Z})$. In particular, we recover the result you proved in HW that the character table of S_n consists entirely of integers.

イロン 不良 とくほう 不良 とうほう

There is a similar dual construction of a module \tilde{S}^{λ} isomorphic to S^{λ} , obtained by taking the span of the elements $\tilde{v}_T = a_T \cdot [T] \in \tilde{M}^{\lambda}$, where $a_T = \sum \sigma$. Thus we have composite $\sigma \in R(T)$ maps $S^{\lambda} \hookrightarrow M^{\lambda} \to \tilde{S}^{\lambda}$ and $\tilde{S}^{\lambda} \hookrightarrow \tilde{M}^{\lambda} \to S^{\lambda}$. The composite of these composites sending S^{λ} to itself is multiplication by a scalar, by Schur's Lemma. It maps v_T to $b_T a_T \cdot v_T = n_T v_T$, where n_T equals the cardinality of the set of quadruples (p_1, q_1, p_2, q_2) such that $p_i \in R(T), q_i \in C(T), p_1q_1p_2q_2 = 1$ and $\epsilon_{q_1} = \epsilon_{q_2}$, minus the cardinality of the set of quadruples (p_1, q_1, p_2, q_2) satisfying the first two conditions but with $\epsilon_{\alpha_1} = -\epsilon_{\alpha_2}$. (In Fulton's book, the subtracted term is erroneously omitted.) This is independent of the choice of T (with shape λ) since replacing T by a different tableau replaces the subgroups R(T), C(T) by conjugates of themselves. Taking T minimal in the order on tableaux of shape λ , we see that multiplication by c_T on $\mathbb{Q}S_p$ sends all c_{II} to 0 for all standard $U \neq T$ (even those not of shape λ), but acts with trace *n*! on $\mathbb{Q}S_n$, so finally $n_{\lambda} = \frac{n!}{\dim S^{\lambda}} \neq 0$. ヘロト ヘヨト ヘヨト ヘヨト

On the other hand, the representations S^{λ} and \tilde{S}^{λ} are not in general equivalent over the integers, and the Specht modules S^{λ} , while still defined over any field k, need not be irreducible (or inequivalent) in general.