Lecture 4-17: Specht modules and standard tableaux

April 17, 2024

Lecture 4-17: Specht modules and standard and tableaux April 17, 2024 1/1

 QQ

K ロ ト K 伺 ト K 手

Given a partition λ of n, last time we defined the Specht module of \mathcal{S}_n corresponding to λ to be the span of the $\mathsf{v}_\mathcal{T} = \mathcal{b}_\mathcal{T} \cdot \{\mathcal{T}\}$ as \mathcal{T} runs over all tableaux with shape λ , where $b_I = -\sum \epsilon_{q} q$, where $q \in C(T)$ ϵ_{q} denotes the sign of q and {T} the tabloid of T. We showed that $b_Iv_I\neq 0$ and that $b_I\{I'\}\in \mathbb{Q}$ v $_I$ for any tabloid $\{I'\}$ if I' has shape λ . Hence $b_I M^\lambda = b_I S^\lambda = \mathbb Q v_I \neq 0$, while $b_I M^{\lambda'} = 0$ if $\lambda' > \lambda$.

 QQQ

イロト イ押 トイヨ トイヨ トーヨー

Theorem

The Specht modules S^λ are irreducible, as are their complexifications $S_{\mathbb{C}}^{\lambda}$ (obtained by replacing the basefield ${\mathbb Q}$ by \mathbb{C}). Every irreducible complex representation of S_n is isomorphic to $S_{\mathbb{C}}^{\lambda}$ for a unique partition λ of $n.$

 Ω

Proof.

Irreducibility over either C or Q is equivalent to indecomposability. If we had $S^\lambda=V\oplus W$, then $\mathbb{Q} \mathsf{v}_{\mathsf{I}} = \mathsf{b}_{\mathsf{I}} \mathsf{S}^\lambda = \mathsf{b}_{\mathsf{I}} \cdot \mathsf{V} \oplus \mathsf{b}_{\mathsf{I}} \cdot \mathsf{W}$, forcing one of V or W , say V , to contain v_I , whence $V=\mathbb{Q} \mathcal{S}_n v_I = S^{\lambda}$ and S^{λ} is irreducible; similarly so is $S^\lambda_{\mathbb C}.$ Since $<$ is a total order on tableaux, no two S^λ are equivalent, by the above formulas for $b_I\cdot M^{\lambda}.$ Since the number of S^λ matches the number of conjugacy classes in S_n , we have found all of the irreducible complex representations of S_n .

From this it can be shown that the rational group algebra $\mathbb{Q}S_n$ is isomorphic to a sum of matrix rings $M_{n_l}(\mathbb{Q})$, in the same way that $\mathbb{C}S_n$ is a sum of matrix rings $M_{n_i}(\mathbb{C})$.

つひひ

イロト イ何 トイヨ トイヨ トー

Now we want to work out the degree of $S^\lambda.$ We first show that this degree is at least the number f^λ of standard tableaux of shape λ .

Proposition

For fixed λ the elements v_T are linearly independent as T runs through the standard tableaux of shape λ .

 QQ

Proof.

We mention that the argument in Chapter 7 of Fulton is inadequate, using only as it does the previously defined total order on tableaux. Instead one needs a total order ≺ on tabloids $\{T\}, \{T'\}$ of shape λ , defined by decreeing that $\{T\} \prec \{T'\}$ if the largest number occurring in different rows occurs higher in $\{I\}$ than in $\{I'\}.$ By the remark after Lemma 1 of the last lecture, we have $\{q \cdot I\} \prec \{I\}$ if T is standard and $q \in C(I)$. Thus for I standard each v_I is a combination of tabloids of which the \prec -largest term is $\{I\}$. The independence of such v_{I} then follows at once by considering the ≺-maximal term occurring with nonzero coefficient in a dependence relation.

 QQ

イロト イ母 トイヨ トイヨ トー

Now we want to show that the v_I for I standard also span S^{λ} . To do this we need a different presentation of S^λ , realizing it as a quotient rather than a submodule of an S_n -module. We therefore define a column tabloid [7] to be an equivalence class of tableaux ± 7 with signs attached, where ± 7 is identified with $\pm(\epsilon_qT)$ whenever $q\in C(T)$. There is an obvious action of S_n on column tabloids of shape λ and thus on the space \tilde{M}^λ spanned by them; the definitions of [7] and v_{I} show that the map $\alpha: \tilde{M}^{\lambda} \to S^{\lambda}$ sending $[T]$ to $\stackrel{\textstyle\cdot}{\nu_I}$ is a well defined surjective Sn-module map.

 QQ

イロト イ母 トイヨ トイヨ トー

It turns out that there are certain operations $\pi_{i,k}$ on column tabloids which are such that the differences [7] – $\pi_{j,k}[T]$ span the kernel of α . Here the parameter *j* is a column of T lying to the left of its rightmost column and k is a positive integer at most equal to the length of the $(j+1)$ st column of $I.$ Then $\pi_{j,k}[I]$ is the sum of the column tabloids [S] obtained from [T] by interchanging the top k numbers in the $(j + 1)$ st column with all possible subsets of k numbers in the jth column, preserving the vertical order of these elements throughout.

 QQ

イロメ イ何 メ イヨメ イヨメー

For example,

$$
\pi_{1,2}\begin{pmatrix} 1 & 2 \\ 4 & 3 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 4 & 5 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}
$$

メロメメ 御 メメ きょくきょ

 299

For the proof that the differences [7] – $\pi_{j,k}[T]$ span the kernel of α , see Chapter 7 of Fulton's book; it is not difficult but a bit too much of a digression to include here. We now introduce one more total ordering, this time on column tabloids (the last one, I promise!) We decree that $[T] \succ [T']$ if in the rightmost column where $[T], [T']$ differ, the lowest box which has different entries after both columns are rearranged in increasing order is larger in $[T]$ than in $[T']$. Then we have

Lemma 3: straightening law

If S is a nonstandard tableau of shape λ then by repeatedly using the relations $[I]=\pi_{j,k}[I]$ (for various j,k) we can write [S] as a combination of $[I_i]$ where the I_i are standard.

 QQ

イロメ イ何 メ イヨメ イヨメー

Proof.

First, we may rearrange the columns of S are in increasing order, possibly changing [S] by a sign. If S is still not standard, then suppose that the kth number in the jth column is larger than the *k*th number in the $(j+1)$ st column. Applying $\pi_{j,k}$ to ${\mathcal S}$, we find that all column tabloids appearing are larger than [S] in the ordering, so iteration of this process equates [S] to a combination of the desired form.

 Ω

(□) (@) (□)

For example, taking $j = k = 1$, we find that

$$
\begin{pmatrix} 2 & 1 \ 3 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 \ 3 & 7 \end{pmatrix} + \begin{pmatrix} 2 & 3 \ 1 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 \ 3 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 3 \ 2 & 7 \end{pmatrix}
$$

Hence the v_T for T standard provide a basis of the Specht module S^λ and its dimension equals the number f^λ of standard tableaux of shape $\lambda.$ Also we see that the Specht module S^λ can in fact be defined over the integers, so that every representation π of S_n is equivalent to one whose range lies in $GL_n(\mathbb{Z})$. In particular, we recover the result you proved in HW that the character table of S_n consists entirely of integers.

 QQ

イロト イ何 ト イヨ ト イヨ トー

There is a similar dual construction of a module $\tilde S^\lambda$ isomorphic to S^{λ} , obtained by taking the span of the elements $\tilde{v}_I=\sigma_I\cdot [I]\in \tilde{M}^{\lambda}$, where $\sigma_I=\;\; \sum \;\;\sigma.$ Thus we have composite $\sigma \in R(T)$ maps $S^\lambda\hookrightarrow M^\lambda\to \tilde S^\lambda$ and $\tilde S^\lambda\hookrightarrow \tilde M^\lambda\to S^\lambda.$ The composite of these composites sending S^λ to itself is multiplication by a scalar, by Schur's Lemma. It maps v_I to $b_Ia_I\cdot v_I = n_Iv_I$, where n_I equals the cardinality of the set of quadruples (ρ_1,q_1,ρ_2,q_2) such that $\mathsf{p}_i\in R(T), q_i\in C(T), \mathsf{p}_1q_1\mathsf{p}_2q_2=1$ and $\epsilon_{q_1}=\epsilon_{q_2}$, minus the cardinality of the set of quadruples $(\mathsf{p}_1,\mathsf{q}_1,\mathsf{p}_2,\mathsf{q}_2)$ satisfying the first two conditions but with $\epsilon_{\boldsymbol{q}_1} = -\epsilon_{\boldsymbol{q}_2}$. (In Fulton's book, the subtracted term is erroneously omitted.) This is independent of the choice of T (with shape λ) since replacing T by a different tableau replaces the subgroups $R(T)$, $C(T)$ by conjugates of themselves. Taking T minimal in the order on tableaux of shape λ , we see that multiplication by c_I on $\mathbb{O}S₀$ sends all c_U to 0 for all standard $U \neq I$ (even those not of shape λ), but acts with trace *n*! on $\mathbb{Q}S_n$, so finally $n_\lambda = \frac{n!}{\dim n}$ $\frac{n!}{\dim S^{\lambda}}\neq 0.$ $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ QQ

On the other hand, the representations S^λ and $\widetilde S^\lambda$ are not in general equivalent over the integers, and the Specht modules S^{λ} , while still defined over any field k , need not be irreducible (or inequivalent) in general.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$