Lecture 4-15: Representations of the symmetric group

April 15, 2024

[Lecture 4-15: Representations of the symmetric group](#page-0-0) April 15, 2024 1/1

 299

We turn now to a particular group whose representations turn out to be particularly nice (and were historically among the first ones studied). This is the symmetric group S_n . We will follow the development in Chapter 7 of Fulton's wonderful 1997 book entitled "Young tableaux"; throughout we will work over the rational field Q rather than the complex one. First recall that the conjugacy class of a permutation σ is determined by the lengths of the cycles in its cycle decomposition (including the 1-cycles). These form a partition $\lambda = (\lambda_1, \ldots, \lambda_m)$ of n, so that $\sum \lambda_i = n$; by convention we arrange the parts λ_i of λ so that $\lambda_1 \geq \lambda_2 \geq \ldots$ We also write $|\lambda| = n$.

 QQ

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

Given a partition λ of n, we define a (Young) diagram of shape λ to be a an arrangement of boxes in rows, lined up on the left, so that the *i*th row of the arrangement has λ_i boxes. Filling in the boxes with the numbers 1 through n, using each number exactly once, we get a (Young) tableau of this shape, which is called standard if the numbers in the boxes increase across rows and down columns.

 Ω

イロト イ押ト イヨト イヨト

Thus for example

1 2 6 3 5 4

is a standard tableau of shape (3, 2, 1). There is an obvious action of S_n on tableaux of shape λ , obtained by permuting the numbers in the boxes. Given such a tableau T , denote by $R(T)$ the subgroup of S_n consisting of permutations permuting the elements of each row among themselves. Then $R(T)$ is a direct product of symmetric groups, one for each part of λ .

 Ω

イロメ イ何 メ イヨメ イヨメー

Similarly denote by $C(T)$ the subgroup of permutations preserving the columns of T . In the above example $R(T)$ and $C(T)$ are both isomorphic to $S_3 \times S_2 \times S_1$. Note that $R(T) \cap C(T) = 1$, since a permutation in the intersection cannot move any number from its row or column in T . Given two partitions $\lambda = (\lambda_1, \ldots, \lambda_m)$ and $\lambda' = (\lambda'_1, \ldots, \lambda'_r)$ of the same integer n, we say that λ dominates λ' if for all i we have \sum^j j=1 $\lambda_j \geq \sum^{j}$ j=1 λ'_j , defining $\lambda_j=0$ if $j>m$ and $\lambda'_k=0$ if $k>r.$ This is a partial order on partitions of n. The following lemma provides the basic tool we need.

 QQ

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

Lemma 1

Let T, T' be tableaux of shapes λ , λ' with $|\lambda| = |\lambda'| = n$. Assume that λ does not strictly dominate λ' . Then exactly one of the following holds.

There are two distinct integers in the same row of I' and the same column of T.

 $\lambda'=\lambda$ and there are $p'\in R(T'), q\in C(I)$ with $p'\cdot I'=q\cdot I.$

 QQQ

(□) (n) (l) (l) (

Proof.

If the first assertion fails, then the numbers in the first row of I' all occur in different columns of T, so there is $q_1 \in C(T)$ such that these numbers occur in the first row of $q_1 \cdot T$. The numbers in the second row of I' then occur in different columns of I , so also of $q_1 \cdot I$, so there is $q_2 \in C(q_1 \cdot I) = C(I)$ not moving the numbers equal to those in the first row of I' , such that these numbers all occur in the first two rows of $q_2q_1 \cdot T$. Continuing in this way we get $q_1,\ldots,q_k\in C(I)$ such that the numbers in the first k rows of I' all occur in the first k rows of $q_k\cdots q_1\cdot I.$ Since I and $q_k\ldots q_1\cdot I$ have shape λ , the sum of the first k parts of λ' can be at most the corresponding sum for λ and λ dominates λ' .

 Ω

イロト イ何 トイヨ トイヨ トー

Proof.

Since we have assumed the λ does not strictly dominate λ' , we must have $\lambda = \lambda'$; taking k to be the number of rows of λ and $q = q_k \cdots q_1$, we see that $q \cdot I$ and I' have the same numbers in each row, so there is $p' \in R(T')$ with $p' \cdot I' = q \cdot I$, as desired; conversely, if such p' , q exist, then the first assertion must fail.

 $2Q$

イロト イ母ト イヨト イヨト

We now define two total orders, one on partitions and the other on tableaux. Given two distinct partitions $\lambda = (\lambda_1, \ldots, \lambda_m)$ and $\lambda' = (\lambda'_1, \ldots, \lambda'_r)$ we say that $\lambda > \lambda'$ (in the lexicographic order) if we have $\lambda_i > \lambda'_i$, where *i* is the smallest index for which $\lambda_i \neq \lambda'_i$. i Given tableaux T, T' of respective shapes λ, λ' we write $I > I'$ if either $\lambda > \lambda'$ in the lexicographic order, or $\lambda = \lambda'$ and the largest number occurring in a different position in T and T' occurs either in a column further to the left in I or in the same column but lower down. Then for T standard, if $p \in R(T)$, $q \in C(T)$, then $p \cdot I > I$, $q \cdot I < I$; indeed, the largest number in T moved by p is must be moved to the left, while the largest number moved by q must be moved up.

 QQ

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

It follows that if T, I' are standard tableaux with $I'>I$ then there is a pair of numbers in the same row of I' and the same column of T. For then we must be in the second case of Lemma 1, so that $\rho'\cdot I'=q\cdot I$ for some ρ',q ; but this forces $q\cdot I\leq I, p'\cdot I'\geq I'$ by the above observation, a contradiction.

 Ω

イロト イ何 ト イヨ ト イヨ トー

We now define a tabloid $\{T\}$ to be an equivalence class of tableaux, two tableaux being equivalent if they have the same shape and the same numbers in each row. Thus the tableaux represented by

and

4 7 1 6 3 2 5

are the same. Clearly $\{T\} = \{T'\}$ if and only if $T' = p \cdot T$ for some $p \in R(T)$.

 QQQ

 S_n acts on tabloids by the recipe $\sigma \cdot \{T\} = \{\sigma \cdot T\}$; thus the space M^λ spanned by all tabloids of shape λ is an S_η -module. For a tableau T, define $\mathsf{v}_{\mathsf{T}} = \sum \;\; \epsilon_{\sigma} \sigma\{I\} = \mathsf{b}_{\mathsf{T}}\{I\}$, where $\sigma \in C(T)$

 $\mathcal{b}_I=\sum \ \epsilon_{\sigma}\sigma\in \mathbb{Q}\mathcal{S}_0$, the rational group algebra of \mathcal{S}_0 , where ϵ_{σ} is $\sigma \in C(T)$

the sign of σ (1 if σ is an even permutation, -1 otherwise). Clearly $v_T \neq 0$, since $R(T) \cap C(T) = 1$, whence

 $b_T v_I = b_I^2 \{I\} = \#C(I) v_I \neq 0$, where $\#C(I)$ denotes the cardinality of $C(I)$. We have $\sigma \cdot \mathsf{v}_{\mathsf{I}} = \mathsf{v}_{\sigma \cdot \mathsf{I}}$ for $\sigma \in \mathcal{S}_{\mathsf{n}}$ and all tableaux T. Now finally we define the Specht module S^λ to be the $\mathbb{O}S_n$ -module spanned by the v_T as T runs through tableaux of shape λ .

 QQQ

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

Irreducibility of the S^λ will follow from the following lemma.

Lemma 2

Let T, T' be tableaux of respective shapes λ, λ' and assume that λ does not dominate λ' . If there is a pair of integers in the same row of I' and column of I , then $b_I\cdot\{I'\}=0.$ Otherwise we have $b_I \cdot \{I'\} = \pm v_I.$

 QQ

Proof.

If there is such a pair of integers, let t be the transposition that swaps them. Then $b_I t = -b_I$, since $t \in C(T)$, but $t \cdot \{T'\} = \{T'\}$, since $t \in R(T')$. It follows that $b_T \cdot \{T'\} = -b_T \cdot \{T'\} = 0$. If there is no such pair, choose ρ' and q as in the second case of Lemma 1. Then

$$
b_T \cdot \{T'\} = b_T \cdot \{p'\cdot T'\} = b_T \cdot \{q\cdot T'\} = b_T \cdot q \cdot \{T\} = \epsilon_q b_T \cdot \{T\} = \epsilon_q \cdot v_T. \quad \square
$$

By the remark right after Lemma 1, we deduce that if I, I' are standard tableaux with $I' > I$ then $b_I \cdot \{I'\} = 0$.

 Ω

イロメ イ何 メ イヨメ イヨメー