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We turn now to a particular group whose representations turn
out to be particularly nice (and were historically among the first
ones studied). This is the symmetric group Sn. We will follow the
development in Chapter 7 of Fulton’s wonderful 1997 book
entitled “Young tableaux”; throughout we will work over the
rational field Q rather than the complex one. First recall that the
conjugacy class of a permutation σ is determined by the lengths
of the cycles in its cycle decomposition (including the 1-cycles).
These form a partition λ = (λ1, . . . , λm) of n, so that

∑
λi = n; by

convention we arrange the parts λi of λ so that λ1 ≥ λ2 ≥ . . .. We
also write |λ| = n.
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Given a partition λ of n, we define a (Young) diagram of shape λ
to be a an arrangement of boxes in rows, lined up on the left, so
that the ith row of the arrangement has λi boxes. Filling in the
boxes with the numbers 1 through n, using each number exactly
once, we get a (Young) tableau of this shape, which is called
standard if the numbers in the boxes increase across rows and
down columns.
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Thus for example
1 2 6
3 5
4

is a standard tableau of shape (3, 2, 1). There is an obvious
action of Sn on tableaux of shape λ, obtained by permuting the
numbers in the boxes. Given such a tableau T , denote by R(T )
the subgroup of Sn consisting of permutations permuting the
elements of each row among themselves. Then R(T ) is a direct
product of symmetric groups, one for each part of λ.

Lecture 4-15: Representations of the symmetric group April 15, 2024 4 / 1



Similarly denote by C(T ) the subgroup of permutations
preserving the columns of T . In the above example R(T ) and
C(T ) are both isomorphic to S3 × S2 × S1. Note that
R(T ) ∩C(T ) = 1, since a permutation in the intersection cannot
move any number from its row or column in T . Given two
partitions λ = (λ1, . . . , λm) and λ′ = (λ′1, . . . , λ

′
r) of the same

integer n, we say that λ dominates λ′ if for all i we have
i∑

j=1
λj ≥

i∑
j=1

λ′j , defining λj = 0 if j > m and λ′k = 0 if k > r . This is a

partial order on partitions of n. The following lemma provides the
basic tool we need.
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Lemma 1
Let T , T ′ be tableaux of shapes λ, λ′ with |λ| = |λ′| = n. Assume
that λ does not strictly dominate λ′. Then exactly one of the
following holds.

There are two distinct integers in the same row of T ′ and the
same column of T .
λ′ = λ and there are p′ ∈ R(T ′),q ∈ C(T ) with p′ · T ′ = q · T .
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Proof.
If the first assertion fails, then the numbers in the first row of T ′ all
occur in different columns of T , so there is q1 ∈ C(T ) such that
these numbers occur in the first row of q1 · T . The numbers in the
second row of T ′ then occur in different columns of T , so also of
q1 · T , so there is q2 ∈ C(q1 · T ) = C(T ) not moving the numbers
equal to those in the first row of T ′, such that these numbers all
occur in the first two rows of q2q1 · T . Continuing in this way we
get q1, . . . ,qk ∈ C(T ) such that the numbers in the first k rows of T ′

all occur in the first k rows of qk · · ·q1 · T . Since T and qk . . .q1 · T
have shape λ, the sum of the first k parts of λ′ can be at most
the corresponding sum for λ and λ dominates λ′.
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Proof.
Since we have assumed the λ does not strictly dominate λ′, we
must have λ = λ′; taking k to be the number of rows of λ and
q = qk · · ·q1, we see that q · T and T ′ have the same numbers in
each row, so there is p′ ∈ R(T ′) with p′ · T ′ = q · T , as desired;
conversely, if such p′,q exist, then the first assertion must fail.
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We now define two total orders, one on partitions and the other
on tableaux. Given two distinct partitions λ = (λ1, . . . , λm) and
λ′ = (λ′1, . . . , λ

′
r) we say that λ > λ′ (in the lexicographic order) if

we have λi > λ′i , where i is the smallest index for which λi 6= λ′i .
Given tableaux T , T ′ of respective shapes λ, λ′ we write T > T ′ if
either λ > λ′ in the lexicographic order, or λ = λ′ and the largest
number occurring in a different position in T and T ′ occurs either
in a column further to the left in T or in the same column but
lower down. Then for T standard, if p ∈ R(T ),q ∈ C(T ), then
p · T ≥ T ,q · T ≤ T ; indeed, the largest number in T moved by p is
must be moved to the left, while the largest number moved by q
must be moved up.
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It follows that if T , T ′ are standard tableaux with T ′ > T then there
is a pair of numbers in the same row of T ′ and the same column
of T . For then we must be in the second case of Lemma 1, so
that p′ · T ′ = q · T for some p′,q; but this forces q · T ≤ T ,p′ · T ′ ≥ T ′

by the above observation, a contradiction.
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We now define a tabloid {T} to be an equivalence class of
tableaux, two tableaux being equivalent if they have the same
shape and the same numbers in each row. Thus the tableaux
represented by

1 4 7
3 6
2 5

and
4 7 1
6 3
2 5

are the same. Clearly {T} = {T ′} if and only if T ′ = p · T for some
p ∈ R(T ).
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Sn acts on tabloids by the recipe σ · {T} = {σ · T}; thus the space
Mλ spanned by all tabloids of shape λ is an Sn-module. For a
tableau T , define vT =

∑
σ∈C(T )

εσσ{T} = bT{T}, where

bT =
∑

σ∈C(T )
εσσ ∈ QSn, the rational group algebra of Sn, where εσ is

the sign of σ (1 if σ is an even permutation, −1 otherwise). Clearly
vT 6= 0, since R(T ) ∩C(T ) = 1, whence
bT vT = b2

T {T} = #C(T )vT 6= 0, where #C(T ) denotes the
cardinality of C(T ). We have σ · vT = vσ·T for σ ∈ Sn and all
tableaux T . Now finally we define the Specht module Sλ to be
the QSn-module spanned by the vT as T runs through tableaux of
shape λ.
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Irreducibility of the Sλ will follow from the following lemma.

Lemma 2
Let T , T ′ be tableaux of respective shapes λ, λ′ and assume that
λ does not dominate λ′. If there is a pair of integers in the same
row of T ′ and column of T , then bT · {T ′} = 0. Otherwise we have
bT · {T ′} = ±vT .

Lecture 4-15: Representations of the symmetric group April 15, 2024 13 / 1



Proof.
If there is such a pair of integers, let t be the transposition that
swaps them. Then bT t = −bT , since t ∈ C(T ), but t · {T ′} = {T ′},
since t ∈ R(T ′). It follows that bT · {T ′} = −bT · {T ′} = 0. If there is
no such pair, choose p′ and q as in the second case of Lemma
1. Then
bT ·{T ′} = bT ·{p′·T ′} = bT ·{q·T ′} = bT ·q·{T} = εqbT ·{T} = εq ·vT .

By the remark right after Lemma 1, we deduce that if T , T ′ are
standard tableaux with T ′ > T then bT · {T ′} = 0.
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