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Last time we saw that there are exactly p equivalence classes of
indecomposable representations of the cyclic group Cp of
prime order p over any field k of characteristic p; these
correspond to the Jordan blocks of size at most p × p and
eigenvalue 1. We express this situation by saying that the cyclic
group Cp has finite representation type over any field of
characteristic p. Indecomposable representations of the infinite
cyclic group Z over any field k correspond up to equivalence to
companion matrices of powers of irreducible polynomials other
than x over k ; thus there are infinitely many of them, but they
can be parametrized in a nice way. We say that Z has tame
representation type.
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In stark contrast, indecomposable representations of the Klein
four-group C2 × C2 do not admit any reasonable
parametrization; entire Ph.D. theses and papers are written on
such representations. We say that C2 × C2 has wild
representation type. We can get a better handle on
representations if we replace indecomposability by a stronger
hypothesis.

Definition: DF p. 847
The representation Vof G is called irreducible or simple if it does
not admit any proper subrepresentation W .
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For example, any one-dimensional representation is trivially
irreducible. For any irreducible polynomial p over a field k , we
have already observed that the quotient R = k[x ]/(p) does not
admit any proper subspace stable under multiplication by x ,
since any such subspace would correspond to a proper ideal of
R as a ring. Thus in particular the representation Q[x ]/(Φn) of the
cyclic group Cn over Q is irreducible, where Φn is the nth
cyclotomic polynomial. On the other hand, any representation
of Cn over a field k for which the polynomial xn − 1 is a product
of distinct linear factors is a direct sum of one-dimensional
subrepresentations, so that the only irreducible representations
of Cn over k are one-dimensional, with the generator g of Cn
acting by an nth root of unity in k .

Lecture 4-1: Irreducible and indecomposable representationsApril 1, 2024 4 / 1



More generally, we have

Theorem
Let A be a finite abelian group of order n and k an algebraically
closed field of characteristic not dividing n. Then any
representation V of A is a direct sum of one-dimensional
representations, so that every irreducible representation is
one-dimensional. There are n inequivalent irreducible
representations of A.
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Proof.

We know that A is isomorphic to a direct sum
m⊕

i=1
Cni of cyclic

groups. Letting gi be a generator of Cni , we have seen that V is
the direct sum of eigenspaces E of gi , each with eigenvalue ei ,
an nith root of 1 in k . Since A is abelian, every eigenspace E is
stable under the action of the generators gj with j ̸= i of the
other cyclic factors Cnj of A. By induction on the number of
cyclic factors, we deduce that V is the direct sum of
one-dimensional simultaneous eigenspaces of all generators gi ,
each of which is an irreducible subrepresentation. Thus all
irreducible representations are one-dimensional. Conversely,
given a one-dimensional space W over k , we make it into a
representation by decreeing that each generator gi act by a
scalar equal to a suitable ei ; as there ni choices for each ei and
the product of the ni is n, the result follows.
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In fact the set Â of equivalence classes of irreducible
representations of A has a group structure and Â ∼= A. This holds
because such classes correspond to homomorphisms from A to
GL1(k) = k∗ and the product π1π2 of two such homomorphisms
π1, π2 (sending a ∈ A to π(1)π2(a)) is another homomorphism.
Since (as noted above) any π sends a generator gi of a cyclic
factor of A to an nith root of 1 in k , the isomorphism follows. Note
however that there is no canonical homomorphism from Â to A,
since the isomorphism between these groups depends on the
choice of a particular primitive nith root of 1 in k for all i.
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Of course most finite groups G are nonabelian; accordingly
most irreducible representations of such groups have degree
larger than one. The following key result reduces the study of
such representations to the irreducible case, under a mild
restriction on k .

Maschke’s Theorem: DF, p. 849
If the characteristic of k does not divide the order n of G, then
any representation V of G is semisimple; that is, it is the direct
sum of irreducible subrepresentations.
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Proof.
There is nothing to prove if V is irreducible, so assume not and let
W be a proper submodule. It is enough to show that there is a a
submodule W ′ complementary to W in V , so that V is the direct
sum of W and W ′, for then by induction on dimension both W
and W ′ are direct sums of irreducible submodules, whence so is
V . To construct W ′. let f be any linear projection of V onto W (so
that f maps V onto W and the restriction of f to W is the
identity). Set f̃ (v) = 1

n
∑

g∈G
g−1f (gv). Then for h ∈ G we have

h−1f̃ (hv) = 1
n

∑
g∈G

h−1g−1f (ghv) = f̃ (v), so that f̃ is a G-module

homomorphism from V to W , which is the identity on W , since f
is. The kernel of f̃ is then a submodule W ′ intersecting W trivially;
computing its dimension we see that V is the direct sum of W
and W ′, as desired.

Lecture 4-1: Irreducible and indecomposable representationsApril 1, 2024 9 / 1



The technique of this proof is called averaging over G and
occurs frequently in the study of finite (or more generally
compact) groups. We now study irreducible modules in a rather
roundabout way, first investigating homomorphisms between
them rather than the modules themselves. Note first that the set
hom(M,M′) of G-module homomorphisms from one module M to
another one M′ is clearly a vector space over the basefield k .
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Theorem: Schur’s Lemma; see DF, Exercise 18, p. 853
Assume that k is algebraically closed. Let V ,W be irreducible
G-modules. If V is not isomorphic to W , then hom(V ,W ) = 0. If V
is isomorphic to W , then hom(V ,W ) ∼= k .
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Proof.
The kernel and image of any G-module homomorphism are
both G-submodules, so if V ̸∼= W , then any module
homomorphism from V to W necessarily has kernel V and image
0, by irreducibility. If V ∼= W let f be an isomorphism and g a
homomorphism between them. The homomorphism f−1g from V
to V , as a linear map, must have an eigenvalue λ; but then its
λ-eigenspace, being the kernel of g − λf , must be a nonzero
G-submodule of V and thus all of V . Hence g = λf , as
claimed.

This result says in particular that the only linear maps from V to
itself commuting with the action of G are the scalars.
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We now introduce a ring such that modules over this ring (for
fixed basefield k) are the same things as G-modules.

Definition: DF, p. 840
Given k and G, the group algebra kG consists of all formal linear
combinations

∑
g∈G

kgg of elements of G with coefficients in k . The

group elements g are regarded as linearly independent, so that
two such combinations agree if and only if their coefficients
match up term by term. We add two such combinations and
multiply by elements of k in the obvious way. We take the
product

∑
g∈G

kgg
∑

g∈G
ℓgg of two elements of kG to be∑

g,h∈G
kgℓhgh, collecting coefficients in this last sum to make the

group elements appearing in it distinct.
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Given any G-module V over k we then make V into a
kG-module by decreeing that (

∑
g∈G

kgg)v =
∑

g∈G
kg(gv).

Equivalently, any homomorphism π : G → GL(V ) extends
uniquely to a k-algebra homomorphism from kG to the ring
M(V ) of all linear transformations from V to itself, where V is a
finite-dimensional vector space over k . In particular, kG itself,
clearly being a kG-module, is also a G-module. We call it the
regular representation of G.
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