
FINAL EXAM SOLUTIONS
1. Find two examples of a ring R with exactly two prime ideals, one with one such ideal
contained in the other, the other with neither ideal contained in the other.

For the first example one can take any DVR, e.g. the power series ring k[[x]], with k a
field; for the second one can take e.g. Z/6Z.

2. Classify as completely as you can the fields that are homomorphic images of Q[x, y, z],
the polynomial ring in three variables over Q.

These are exactly the finite extensions of Q (any such extension being in fact generated
by a single element over Q).

3. Find all singular points on the affine curve in C2 defined by the equation y2 = x3 + x2

and find the dimension of the tangent space to this curve at each such point.

There is only one such point, namely the origin (0, 0), this being the only point at which
the gradient ∇f of the defining equation f(x, y) = y2 − x3 − x2 = 0 vanishes.

4. Let k be a field. Find a primary decomposition of the ideal I = (xy, y2) in the polynomial
ring k[x, y] in two generators over k; that is, realize I as a finite intersection of primary
ideals. Also identify the radicals of each of these ideals.

We have I = (y) ∩ (x2, y); the radicals of these primary ideals are (y) and (x, y).

5. If K is an algebraically closed field, classify the subvarieties of Kn whose coordinate
rings are Artinian.

These are exactly the finite subsets of Kn.



6. The example of the curve C in C2 defined by the equation x3 = y2 has been discussed
multiple times in class. State as many properties of this curve and its coordinate ring as
you can, focussing on the ones that make it different from most curves and their coordinate
rings.

The coordinate ring C[t2, t3] ⊂ C[t] of this curve is not a Dedekind domain, since t lies in
its quotient field but not in the ring itself. The variety C is not smooth, having the origin
(0, 0) as its unique singular point. We can regard C as an unramified double or unramified
triple covering of C, projecting to the first or second coordinate. C is birational but
not isomorphic to C; there is a bijective morphism from C to C whose inverse is not a
morphism.

7. Show that the quotient field K of an integral domain R is flat as an R-module.

It was shown in class that the tensor product M ⊗R K of an R-module M with K may
be identified with the localization S−1M , with S the set of nonzero elements of R. The
functor M → S−1M is well known to be exact.

8. Let k be an algebraically closed field, A an affine domain over k. We have computed the
dimension of A in four different ways (three of them involving a choice of maximal ideal
M of A, but all three giving the same answer for any given M). Describe these ways as
clearly as you can (but without giving proofs).

First of all, without choosing any M , we can take the dimension of A to be the transcen-
dence degree of its quotient field over k. Next, having chosen M , we can take dimA to
be the degree of the length `(A/Mn) of A/Mn as a module over itself, regarded as an
Artinian ring, this length being polynomial in n for sufficiently large n. We can also take
dimA to be the maximum length d of a strict chain of prime ideals P0 ⊂ P1 · · · ⊂ Pd−1, as
the last element Pd−1 of the chain runs over all maximal ideals of A. Finally, we can take
dimA to be the minimum number of generators of any M -primary ideal of A, again as M
runs over all maximal ideals of A.


