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Today I will pick up on some topics in commutative algebra
omitted last time.
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I begin with localization, a fundamental tool for simplifying (and
thereby better understanding) the ideal structure of rings. Given
a ring R and a multiplicatively closed subset S (so that
1 ∈ S, 0 ̸∈ S, and S is closed under multiplication), the localized
ring S−1R consists by definition of all equivalence classes of pairs
(r , s) ∈ R × S, the relation ∼ being defined by (r1, s1) ∼ (r2, s2) if
there is s ∈ S with s(r1s2 − r2s1) = 0. A particularly important
example is the case where S = R − P is the complement of a
prime ideal P of R. Every ideal I in R′ = S−1R is the extension JR′

of some ideal J of R, the extension being proper (not all of R′) if
and only if J does not intersect S.
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There is an order-preserving bijection between prime ideals of R
contained in P and prime ideals of R′ = RP , a prime ideal Q of R
corresponding to its extension QR′ in R′ and a prime ideal Q′ of
R′ corresponding to its contraction Q′ ∩ R in R. (More generally,
there is an order-preserving bijection between prime ideals of
any localization S−1R and prime ideals of R not intersecting S.) In
particular, RP is always local, its maximal ideal being PRP . The
passage from R to RP thus cuts out all ideals (and in particular all
prime ideals) except those contained in P, just as the passage
from R to its quotient R/P cuts out all ideals except those
containing P. In particular the quotient RP/PRP is a field and may
be identified with the quotient field of R/P.
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Modules can also be localized: given an R-module M and a
multiplicatively closed subset S of R, one has the localized
module S−1M, defined in the same way as S−1R, replacing R by
M. Localization of modules is then an exact functor. This
construction actually appeared already in the fall, though rather
inconspicuously; there I showed that for any module M over an
integral domain R, the tensor product M ⊗R K may be identified
with S−1M, where S consists of the nonzero elements in R and K is
its quotient field.
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Using localization I was able to show that if S is a finitely
generated integral extension of R and P is a prime ideal of R
then there is always at least one but only finitely many prime
ideals Q of S contracting to P; also there are no inclusion
relations between any two of the ideals Q. I used this to show
that the Krull dimension of a finitely generated integral extension
of a ring R is the same as the Krull dimension of R itself.
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Another construction this quarter changes the structure of R
more drastically, enabling us to solve many equations in a larger
ring that have no solutions in R. This is completion of R with
respect to an ideal I. One starts by putting a topology on R,
namely the I-adic topology, such that a nonempty open subset
of R is exactly one that contains r + In for some n whenever it
contains r ∈ R. One then completes R in this topology, looking at
the set R̂ of coherent (or Cauchy) sequences (r1, r2, . . .) such that
ri ∈ R/I i and rj maps to ri under the canonical surjection
R/I j ⇒ R/I i whenever j ≥ i. There is a natural map R → R̂ sending
r to the constant sequence (r , r , . . .); its kernel is the intersection
∩nIn of all the powers of I. If R is Noetherian, this intersection
coincides with the set of s ∈ R such that (1 − i)s = 0 for some i ∈ I.
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The usual geometric series
∑∞

n=0 in then converges in R̂ for any
i ∈ I, thus guaranteeing that 1 − i is invertible in R̂ for any i ∈ I. If I
is maximal, then any r∈ R not lying in I thereby acquires a
multiplicative inverse in R̂, so that (if R is Noetherian) R̂ contains a
copy of the localization RI . In addition, though, and as promised
above, many polynomial equations with coefficients in R have
solutions in R̂. More precisely, we have Hensel’s lemma: given an
ideal I and a polynomial F ∈ R̂[x ] reducing to f ∈ R/I[x ], suppose
that f = g1g2 with g1,g2 ∈ R/I[x ] generating the unit ideal of
R/I[x ] and g1 is monic; then the factorization of f lifts to a
factorization G1G2 of F in R̂[x ] such G1 is monic and Gi reduces
to gi for i = 1, 2. In particular, given a polynomial q ∈ K [x ] over a
field K = Z/pZ of prime order with distinct roots in its splitting field,
this polynomial has a full complement of distinct roots in the
completion Zp of Z with respect to (p).
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As large as a completion R̂ of R has to be (to contain roots for a
wide family of polynomials), it is still not too large: the completion
R̂ of a Noetherian ring R with respect to an ideal I is Noetherian.
Also the completion R̂ of R with respect to a maximal principal
ideal (x) is a discrete valuation ring, so that (as you saw last
quarter) the only nonzero ideals of R̂ are the powers of (x). A
fundamental example to keep in mind is R = Z, I = (p) for p
prime, where elements of the completion Zp can be thought of
as Laurent series

∑∞
n=−m anpn with the coefficients ai lie in

{0, . . . ,p − 1}, where addition, subtraction, and multiplication
take place with carrying. Another simpler example is the power
series ring k[[x1, . . . , xn]], which can be identified with the
completion of the polynomial ring k[x1, . . . , xn] with respect to the
maximal ideal (x1, . . . , xn).
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